COMPUTER ORGANIZATION AND ARCHITECTURE

III Semester COMPUTER ORGANIZATION AND ARCHITECTURE

Course Code 21CS34 CIE Marks 50
Teaching Hours/Week | 3:0:0:0 SEE Marks 50
(L:T:P: S)

Total Hours of 40 Total Marks 100
Pedagogy

Credits 03 Exam Hours 03

Course Learning Objectives

CLO 1. Understand the organization and architecture of computer systems, their structure and operation
CLO 2. Illustrate the concept of machine instructions and programs

CLO 3. Demonstrate different ways of communicating with 1/0 devices

CLO 4. Describe different types memory devices and their functions

CLO 5. Explain arithmetic and logical operations with different data types

CLO 6. Demonstrate processing unit with parallel processing and pipeline architecture

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

1. Lecturer method (L) need not to be only a traditional lecture method, but alternative effective teaching methods
could be adopted to attain the outcomes.

2. Use of Video/Animation to explain functioning of various concepts.

3. Encourage collaborative (Group Learning) Learning in the class.

4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.

5. Adopt Problem Based Learning (PBL), which fosters students’ Analytical skills, develop design thinking skills such as
the ability to design, evaluate, generalize, and analyze information rather than simply recall it.

6. Introduce Topics in manifold representations.

7. Show the different ways to solve the same problem with different circuits/logic and encourage the students to come
up with their own creative ways to solve them.

8. Discuss how every concept can be applied to the real world - and when that's possible, it helps improve the students’
understanding.

Module-1

Basic Structure of Computers: Basic Operational Concepts, Bus Structures, Performance - Processor Clock, Basic
Performance Equation, Clock Rate, Performance Measurement.

Machine Instructions and Programs: Memory Location and Addresses, Memory Operations, Instructions and
Instruction Sequencing, Addressing Modes

Textbook 1: Chapter1 - 1.3,1.4, 1.6 (1.6.1-1.6.4, 1.6.7), Chapter2 - 2.2 to 2.5

Teaching-Learning Process Chalk and board, Active Learning, Problem based learning

Module-2

Input/Output Organization: Accessing /0 Devices, Interrupts - Interrupt Hardware, Direct Memory Access, Buses,
Interface Circuits
Textbook 1: Chapter4 - 4.1, 4.2, 4.4, 4.5, 4.6

Teaching-Learning Process Chalk and board, Active Learning, Demonstration

Module-3

Memory System: Basic Concepts, Semiconductor RAM Memories, Read Only Memories, Speed, Size, and Cost, Cache
Memories - Mapping Functions, Virtual memories
Textbook 1: Chapter 5 - 5.1 to 5.4, 5.5 (5.5.1, 5.5.2)

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

Teaching-Learning Process Chalk and board, Problem based learning, Demonstration

Module-4

Arithmetic: Numbers, Arithmetic Operations and Characters, Addition and Subtraction of Signed Numbers, Design of
Fast Adders, Multiplication of Positive Numbers

Basic Processing Unit: Fundamental Concepts, Execution of a Complete Instruction, Hardwired control,
Microprogrammed control

Textbook 1: Chapter2-2.1, Chapter6 - 6.1 to 6.3

Textbook 1: Chapter7 - 7.1,7.2,7.4,7.5

Teaching-Learning Process Chalk& board, Problem based learning

Module-5

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, Vector
Processing, Array Processors
Textbook 2: Chapter 9 - 9.1, 9.2, 9.3, 9.4, 9.6, 9.7

Teaching-Learning Process Chalk and board, MOOC

Course Outcomes

At the end of the course the student will be able to:

CO 1. Explain the organization and architecture of computer systems with machine instructions and programs
CO 2. Analyze the input/output devices communicating with computer system

CO 3. Demonstrate the functions of different types of memory devices

CO 4. Apply different data types on simple arithmetic and logical unit

CO 5. Analyze the functions of basic processing unit, Parallel processing and pipelining

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum
passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the
academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35%
(18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum
total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

1. First test at the end of 5t week of the semester

2. Second test at the end of the 10t week of the semester

3. Third test at the end of the 15t week of the semester

Two assignments each of 10 Marks
4. First assignment at the end of 4t week of the semester
5. Second assignment at the end of 9t week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for 20 Marks (duration
01 hours)
6. At the end of the 13w week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be
scaled down to 50 marks

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the
CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper has to be designed to attain the different levels of Bloom’s taxonomy as per the
outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the

sub}'ect !duration 03 hoursl

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

1. The question paper will have ten questions. Each question is set for 20 marks. Marks scored shall be
proportionally reduced to 50 marks

2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of
3 sub-questions), should have a mix of topics under that module.

The students have to answer 5 full questions, selecting one full question from each module.

Textbooks
1. Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer Organization, 5th Edition, Tata McGraw Hill
2. M. Morris Mano, Computer System Architecture, PHI, 3rd Edition

Reference:
1. William Stallings: Computer Organization & Architecture, 9th Edition, Pearson

Weblinks and Video Lectures (e-Resources):

1. https://nptel.ac.in/courses/106/103/106103068/

2. https://nptel.ac.in/content/storage2 /courses/106103068/pdf/coa.pdf
3. https://nptel.ac.in/courses/106/105/106105163/

4. https://nptel.ac.in/courses/106/106/106106092/

5. https://nptel.ac.in/courses/106/106/106106166/

6. http://www.nptelvideos.in/2012 /11 /computer-organization.html

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning
Discussion and literature survey on real world use cases
Quizzes

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

MODULE 1: BASIC STRUCTURE OF COMPUTERS

CA includes the information formats the instruction set and techniques for addressing memory.
In general covers, CA covers 3 of computer-design namely: 1) Computer Hardware, 2) Instruction

set Architecture and 3) Computer Organization.

1. Computer Hardware
} It consists of electronic circuits, displays, magnetic and optical storage media and

communication facilities.
2. Instruction Set Architecture

} Itis programmer visible machine interface such as instruction set, registers, memory
organization and exception handling.

’ Two main approaches are 1) CISC and 2) RISC.
(CISC Complex Instruction Set Computer, RISC Reduced Instruction Set Computer)

3. Computer Organization
It includes the high level aspects of a design, such as
--> memory-system

—> bus-structure &
..... > design of the in ernal CPU.

} It refers to the operational units and their interconnections that realize the architectural

specifications.
’ It describes the function of and design of the various units of digital computer that store and

process information.

FUNCTIONAL UNITS
« A computer consists of 5 functionally independent main parts:

1) Input
2) Memory
3) ALU
4) Output &
5) Control units.
Memory
Arnthmetic
Input and
logic
Interconnection
network
Output Control
o Processor

Figure 1.1 Basic functional units of a computer.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

BASIC OPERATIONAL CONCEPTS
« An Instruction consists of 2 parts, 1) Operation code (Opcode) and 2) Operands.
[OPCODE | OPERANDS |
« Data/operands are stored in memory.
« The individual instruction are brought from the memory to the processor.
« Then, the processor performs the specified operation.
« Let us see a typical instruction
ADD LOCA, RO
e This instruction is an addition operation. The following are the steps to execute the instruction
Step 1: Fetch the instruction from main-memory into the processor.
Step 2: Fetch the operand at location LOCA from main-memory into the processor.
Step 3: Add the memory operand (i.e. fetched contents of LOCA) to the contents of register RO.
Step 4: Store the result (sum) in RO.
« The same instruction can be realized using 2 instructions as:
Load LOCA, R1
Add R1, RO
* The following are the steps to execute the instruction:
Step 1: Fetch the instruction from main-memory into the processor.
Step 2: Fetch the operand at location LOCA from main-memory into the register RI.
Step 3: Add the content of Register Rl and the contents of register RO.
Step 4: Store the result (sum) in RO.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

MAIN PARTS OF PROCESSOR
* The processor contains ALU, control-circuitry and many registers.
» The processor contains ,,n” general-purpose registers Ro, thrgugh Rn-1
* The IR holds the instruction that is currently being exected.
* The control-unit generates the timing-signals that determine thegiven action is to take place.
* The PC contains the memory-address of the next-instruction to be fetched & executed.
« During the execution of an instruction, the contents of PC are updated to point to next instruction.
« The MAR holds the address oft e memory-location to be accessed.
« The MDR contains the data to be written into or read out of the addressed location.
« MAR and MDR facilitates the communication with memory.
(IR Instruction-Register, PC Program Counter)
(MAR Memory Address Register, MDR Memory Data Register)
STEPS TO EXECUTE AN INSTRUCTION
1) The address off instruction (to bee executed) gets loaded into PC.
2) The contents of PC (i.e. address) are transferred to the M R & control-unit issues Read signal to
memory.
3) After certain amount of lapsed time, the first instruction is read out of memory and placed into
MDR.
4) Next, the contents of MDR a e transferred to IR. At this point, the instruction can be decoded &
executed.
5) To fetch an operand, its address is placed into MAR & control-unit issues Read signal. As a result,
the operand is transferred from memory into MDR, and then it is transferred from MDR to ALU.
6) Likewise required number of operands is fetched into processor.
7) Finally, ALU performs the desired operation.
8) If the result of this operation is to be stored in the memory, then the result is sent o the MDR.
9) The address of the location where t e result is to be stored is sent to the MAR and a Write cycle is
initiated.
10) At some point during execution, contents of PC are incremented to point to next instruction in the
program.

Main memory

Processor-memory interface

Control

<—— Processor

ALU
R

-3

n general purpose
registers

figure 1.2 tonnedion BéMm :he processor anc'irihe main memory.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

BUS STRUCTURE
* A bus is a group of lines that serves as a connecting Path for several devices.
* A bus may be lines or wires.
« The lineS carry data or address or control signal.
1) There are 2 types of Bus structures: 1) Single Bus structure and 2) Multiple Bug structure
2) Single Bus Structure
Because the bus can be used for only one transfer at a time, only 2 units can actively use
the bus at any given time.
P Bus control lines a e used to arbitrate multiple requests for use of the bus.
} Advantages:
1) Low cost &
2) Flexibility for attach ng peripheral devices.
3) Multiple Bus Structure
Systems that contain multiple buses achieve more con currency in operations.
Two or more transfers can be carried out at the same time.
Advantage: Better performance.

} Disadvantage: Increased cost.

Input Output Memory Processor

A4
Figure 1.3 Single-bus structure.

AN

» The devices connected to a bus vary widely in their speed of op ration.

» To synchronize their op rational-speed, buffer-registers can be used.
* Buffer Registers

_are included with the devices to hold t he information during transfers.
_ prevent a high-speed processor from being locked to a slow 1/0 device during data transfers.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

PERFORMANCE
e The most important measure of performance of a compUter is how quickly it can execute programs.
¢ The speed of a computer is affected by the design of

1) Instruction-set.

2) Hardware & the technology in which the hardware is impl@ented

3) Software including the operating system
* Because programs are usually written in a HLL, performance is also affected by the compiler that
translates programs into machine language. (HLL High Level Language).
» For best performance, it is necessary to design the compiler, machine instruction set and hardware in
a co ordinated way.

Bus

O
\/’

Fisusrm 1.5 The nrcasear encha

* Let us examine the flow of program instructions and data between the memory & the processor.
» At the start of execution, all program instructions are stored in the main-memory.
» As execution proceeds, instructions are fetched into the processor, and a copy is placed in the cache.
* Later, if the same instruction is needed a second time, it is read directly from the cache.
» A program will be executed faster
if movement of instruction/data between the main-memory and the processor is minimized
which is achieved by using the cache.

PROCESSOR CLOCK
» Processor circuits are controlled by a timing signal called a Clock.
» The clock defines regular time intervals called Clock Cycles.

To execute a machine instruction, the processor divides the action to be performed into a sequence
of basic steps such that each step can be completed in one clock cycle.
« Let P = Length of one clock cycle

R = Clock rate.

» Relation between P and R is given by

* R is measured in cycles per second.
* Cycles pe second is also called Hertz (Hz)

BASIC PERFORMA CE EQUATION

* Let T = Processor time requierd to executed a

program. N = Actual number of instruction
executions.

S = Average number of basic steps needed to execute one machine
instruction. R = Clock rate in cycles per second.
» The program execution time is given by

T=N*S/R....(1)
» Equation 1 is referred to as the basic performance equation.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
« To achieve high performance, the computer designer must require a value of T, which means
reducing N and S, and increasing R.
l The value of N is reduced if source program is compiled into fewer machine instructions.
The value of S is reduced if instructions tave smaller number of basic steps to perform.
The value of R can be increased by using a higher frequency clock.
» Care has to be taken while modifying values since changes in one parameter may affect the other.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

CLOCK RATE
 There are 2 possibilities for increasing the clock rale R:
1) Improving the IC technology makes logic-circuits faste .
This reduces the time needed to compute a basic step. (IC integrated cjrcuits).
This allows the clock period P to be reduced and the clock rate R to be increased.
2) Reducing the amount of progessing done in one basic step also reduces the clock period P.
* In presence of a cache, the percentage of accesses to the main-memory is small.
Hence, much of performance-gain expected from the use of faster technology can be realized.
The value of Twill be reduced by same factor as R is increased,,." S & N are not affected.

PERFORMANCE MEASUREMENT

» Benchmark refers to standard task used to measure how well a processor operates.

» The Performance Measure is the time taken by a computer to execute a given benchmark.

* SPEC selects & publishes the standard programs along with their test results for different application
domains. (SPEC System Performance Evaluation Corporation).

¢ Runaing time on the reference computer
SPEC rating = :
SPEC Rating is given by Running time on the compuler under test

« SPEC rating = 50 The computer under test is 50 times as fast as reference-computer.
* The test is repeat for all the programs inth SPEC suite.

Then the geometric mean of the results is computed.
» Let SPEC = Rating for program ,,i' in the suite. A :

Overall SPEC rating for the computer is given by SPECrating = (HSPBC.)

where n = no. of programs in the suite.
INSTRUCTION SET: CISC AND RISC

RISC CISC
Simple instructions taking one c plex tructions taking multiple cycle.
Instructions are executed by hardwired control Instructions are executed by microprogrammed
unit. control unit.

Few Instrugtions Many instructions.

Fixed format instructions. Variable format instructions.

Few addressing modes and most instructions Many addressing modes.

have register to regigter addressing mode.

Multiple regigter set . Single register set.

Highly pipelined. No pipelined or less pipelined.

Problem 1:

List the steps needed to execute the machine instruction

ad R2, LOC

in terms of transfers between the components processor and some simple control commands. Assume
that the address of the memory-location containing this instruction is initially in register PC. Solution:
1. Transfer the contents of register PC to register MAR.
2. Issue a Read command to memory.
And, then wait until it has transferred the requested word into register MDR.
. Transfer the instruction from MDR into IR and decode it.
. Transfer the address LOCA from IR to MAR.
. Issue a Read command and wait until MDR is loaded.
. Transfer contents of MDR to the ALU
. Transfer contents of RO to the ALU.
. Pereform addition of the two operands in the ALU and tra sfer result into RO.
. Transfer conte=nts of PC to ALU.
10. Add 1 to operand in ALU and transfer incremented address to PC.

CoO~NOOThA~W

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

Problem 2:
List the steps needed to execute the machine instruction:
Add R4, R2, R3

in terms of transfers between the components of processor and some simple control commands.
Assume that the address of the memory-location containing this instruction is initially in register PC.
Solution:

1. Transfer the contents of register PC to register MAR.

2. Issue a Read command to memory.

And, then wait until it has transferred the requested word into register MDR.

. Transfer the instru ction from MDR into IR and decode it.
. Transfer contents of Rl and R2 to the ALU.
. Perform addition of two operands in the ALU and transfer answer into R3.
. Transfer co tents of PC to ALU.
. Add 1 to operand in ALU and transfer incremented address to PC.

~No ok~ w

Problem 3:
(a) Give a short sequence of machine instructions for the ask "Add the contents of memory-location A
to those of location B, and place the answer in location C". Instructions:

Load Ri, LOC
and
Store Ri, LOC

are the only instructions available to transfer data between memory and the general purpose registers. Add
instructions are described in Section 1.3. Do not change contents of either location A or B.
(b) Suppose that Move and Add instructions are available with the formats:

Move Locationl, Location2

and

Add Locationl, Location2
These instructions move or add a copy of the operand at the second location to the first location, overwriting
the original operand at the first location. Either or both operands can be in the memory or the general-
purpose registers. Is it possible to use fewer instructions of these types to accomplish the task in part (a)? If
yes, give the sequence.

Solution:
(a)
Load A, RO
Load B, RI
Add RO, RI
Store RI, C
(b) Yes;
Move B, C
Add A, C
Problem 4:

A program contains 1000 instructions. Out of that 25% instructions requires 4 clock cycles,40%
instructions require 5 clock cycles and remaining require 3 clock cycles for execution. Find the total time
required to execute the program running in a 1 GHz machine.
Solution:

N = 1000

25% of N= 250 instructions require 4 clock cycles.

40% of N =400 instructions require 5 clock cycles.

35% of N=350 instructions require 3 clock cycles.

T = (N*S)/R= (250*4+400*5+350*3)/1X10° =(1000+2000+1050)/1*10%= 4.05 ps.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

Problem 5:
For the following processor, obtain the performance.

Clock rate = 800 MHz

No. of instructions executed = 1000

Average no of steps needed / machine instruction = 20
Solution:

NxS ’
T= T: (1000%20)/800 * 10°=25 micro sec or 25*10° sec

Problem 6:
(a) Program execution time Tis to be examined for a certain high-level language program. The program
can be run on a RISC or a CISC computer Both computers use pipelined instruction execution, but
pipelining in the RISC machine is more effective than in the CISC machine. Specifically, the effective value
of Sin the T expression for the RISC machine is 1.2, bitit is only 1.5 for the CISC machine. Both machines
have the same clock rate R. What is the largest allowable value for N, the number of instructions executed
on the CISC machine, expressed as a percentage of the N value for the RISC machine, if time for execution
on the CISC machine is to be longer than on the RISC machine?
(b) Repeat Part (a) if the clock rate R for the RISC machine is 15 percent higher than that for the CISC
machine.
Solution:
(a) Let TR=(NR SR)/RR & Tc= (Ne X Sc)/Rc be execution times on RISC and CISC processors.
Equating execution times and clock rates, we ha e
1.2NR = 1.5Nc
Then
Nc/NR = 1.2/1.5 =0.8
Therefore, the largest allowable value for Ne is 80% of NR.

(b) In this case,
1.2NR/1.15 = 1.5Nc/1.00
Then
Nc/NR =1.2/(1.15 X 1.5) = 0.696
Therefore, the largest allowable value for Ne is 69.6% of N

Problem 7:
(a) Suppose that execution time for a program is proportional to instruction fetch time. Assume that fetching
an instruction from the ache takes 1 time unit, but fetching it from the main-memory takes 10 time units.
Also, assume that a requested instruction is found in the cache with probability 0.96. Finally, assume that
if an instruction is not found in the cache it must first be fetched from the main- memory into the cache
and then fetched from the cache to be executed. Compute the ratio of program execution time without the
cache to program execution time with the cache. This ratio is called the speedup resulting from the
presence of the cache.
(b) If the size of the cache is doubled, assume that the probability of not finding a requested instruction
there is cut in half. Repeat p rt (a) for a doubled cache size.
Solution:
(a) Let cache access time be 1 and main-memory access time be 20. Every instruction that is
executed must be fetched from the cache, and an additional fetch from the main-memory must
be performed for 4% of these cache accesses.
Therefore,

(b)
a - e 1.0 x 20 :
i (1.0 x 1) 4+ (0.04 x 20) v

1 1.0 x 20
Speedup factor 16.7
(1.0 x 1) 4 (002 x 20)

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

MODULE 1 (CONT.): MACHINE INSTRUCTIONS &
PROGRAMS

0
(flip-flops).
« Each cell can store a bit of information i.e. 0 or 1 (Figure 2.1).
« E ach group of n bits is referred to as a word of information, and n is called the word length.
* The word length can vary from 8 to 64 bits. A
unit of 8 bits is called a byte.
« Accessing the memory to store or retrieve a single item o information (word/byte) requires disti ct
addresses for each item loca ion. (It is customary to use numbers from O through 2k-1 as the addresses
of successive-locations in the memory).
« If 2k = no. of addressable locations;
then 2k addresses constitute the address-space of the computer.
For example, a 24-bit addres generates an address-space of 224 locations (16 MB).

| ¢——— nbits ————=|

—t—a First word

—4—2a Second word

—4— jthword

—4—= Last word
Figure 2.1 Memory words.
|‘ 32 bits
by | by by | by
L Sign bit: b5, = 0 for positive numbers
by, = | for negative numbers

(a) A signed integer

8 buts 8 bits 8 bats 8 bits
¥ v it - v —— v e v
ASCIHI ASCH ASCHI ASCH
character character character character

(b) Four characters
Figure 2.2 Examples of encoded information in a 32-bit word

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

BYTE-ADDRESSABILITY
¢ In byte-addressable memory, successive dddresses refer to successive byte locations in the memory.

» Byte locations have addreses O, 1,

« 1T the word-length is 32 bits, successive words are located at addresses 0, 4, 8.. with each wor
d having 4 bytes.

BIG-ENDIAN & LITTLE-ENDIAN ASSIGNMENTS

* There are two ways in which byte-addresses are arranged (Figure 2.3).
1) Big-Endian: Lower byte-addresses are used for the more s gnificant bytes of the word.
2) Little-Endian: Lower byte-addresses a e used for the less significant bytes of the word

* In both cases, byte-addresses 0,4,8. a e taken as the addresses of successive words in the
memory.
Word
address Byte address Byte address
| |
0 0 ! 2 3 0 sl 2 ’ O
B B 5 6 7 4 7 | 6 ’ 5 4
=% | 259 | 2%-3 | 2*=2 :‘_|I 4 |21 | 222 , *_ 3|2t g
| |
(a) Big-endian assignment (D) Little-endian assignment

Figure 2.3 Byte and word addressing.

« Consjder a 32-bit integer (in ex): 0x12345678 which consists of 4 bytes: 12, 34, 56, and 78.
Hence this integer will occupy 4 bytes n memory.
Assume, we store it at memory address starting 1000.

On little-endian, memory il look like
Address | Value |
1000 78 |
1001 56
1002 34
1003 12 |

P on big-endian, memory w Il look like

Address Value
1000 12
1001 34
100 56
100 78

Chaithrashree. A

2
COMPUTER ORGANIZATION AND ARCGHITECTURE

WORD ALLIGMENT
* Words said to be Aligned in memory if they begin at a byte-address that is multiple e o f the
number of bytes
» For example ,)))
If th ¢ word length is 16(2 bytes), aligned words begin at byte-addresses 0, 2, 4
P it the word length is 64(2 bytes), digned words beggin at byte-addresses 0, 8, 16
- Words are said to have Unaligned Addresses if thhey begin at an arbitrary byte-address.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ACCESSING NUMBERS, CHARACTERS & CHARACTERS STRINGS
e A number usUally occupies one word. It can be accessed in the memory by specifying its word
address. Similarly, individual characters can be accessed by their byte-address.
* There are two ways to indicate the length of the string:
1) A special control character with the meaning "end of string"” can be used asghe last character
in the string.
2) A separate memory wo d location or register can contain a humber indicating the length of
the string in bytes.

MEMORY OPERATIONS
« TO memory operations are:

1) Load (Read/Fetch) &
2) Store (Write).

» The Load operation transfers a copy of the contents of a specific memory-location to the pr cessor.
The memory contents remain unchanged.

« Steps for Load operation:
1) Processor sends the address of the desired location to the memory.
2) Processor issues ,,read" signa to memory to fetch the data.
3 Memory reads the data stored at that address.
4) Memory sends the re d data to the processor.

« The Store operation transfers the in f ormation from the register to the specified mem ory-
location. This will destroy the original contents of that memory-location.

« Steps for Store operation are:
1) Processor sends the address of the memory-location where it wants to store data.
2) Processor is use,, write" signal to memory to store the data.
3) Content of register(MDR) is written into the specified memory-location.

INSTRUCTIONS & INSTRUCTION SEQUENCING

« A computer must have instructions capable of performing 4 types of operations:
1) Data transfers between the memory and the registers (MOV, PUSH, POP, XCHG).
2) Arithmetic and logic operations on data (ADD, SUB, UL, DIV, AND, OR, NOT).
3) Program sequencing and control (CALL.RET, LOOP, IN).
4) 1/0 transfers (IN, OUT).

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

REGISTER TRANSFER NOTATION (RTN)

e The possible locations in which transfer of information occurs are: 1) Memory-location 2) Proc essor
register & 3) Registers in 1/0 device.

Location Hardware Binary Address Example Description

Memory LOC, PLACE, NUM Rl f- [LOC] Contents of memory-location LOC
are transferred into register RI.

Processor RO, Rl ,R2 [R3] « [RI]*+[R2] Add the contents f register RI &R2
and places their sum into R3.

I/O Registers DATAIN, DaTA OUT RI f- DATAIN Contents of I/O register DATAIN are
transferred into register RI.

ASSEM BLY LANGUAGE NOTATION: ¢ To represent machi.ne insHugBions and programs, assembll y Language
forma 1s used .
As ml L n u ge Format Description

Mov LOC, RI Transfer data from memory-location LOC to register RI. The contents of LOC
are unchanged by the execution of this instruction, but the old contents of
register Rl are overwritten.

Add RI, R2, R3 Add the contents of registers Rl and R2, and places their sum into register R3.

BASIC INSTRUCTION TYPES

Inst ruction | Syntax Example Description Instructions
Type for
Operation
C<-[A]+][B]
Three Opcode Sourcel,Source2,Destination Add AB,C Add the contents nt®f
Addres memory-locations A & B.
s Then, place the result i
location C.
Two Address | Opcode Source, Destination Add A,B Add the contents of | Move B, C
memory-locations A & B. Add A, C

Then, place the result into

location Blacing the original
contents of this

location.

Operand B is both a source

and a destination.

One Address | Opcode Source/Destination Load A Copy contents of memory- Load A
location A into accumulator. Add B
Add B Ad contents of memory-| Store C

location B to contents of
accumulator register & place

sum back into
accumulator.

Store C Copy the contents of the
accumulator into location C.
Zero Opcode [no Source/Destination] Push Locations of Il operands Not possible
Address are defined implicitly.

The operands are stored in
a pushdown stack.
» Access to data in the registers is much faster than to data stored in memory-locations.
* Let Ri represent a genera e . The instructions: Load ARi

Store Ri,A

Add AR
are generalizations of the Load, Store and Add Instructions for the single-accumulator case, in which
register Ri performs the function of the accumulator.
* In processors, where arithmetic operations as allowed only on operands that are inregi ers, the task
C<-[A]+[B] can be performed vy the instruction sequence:

Move A,Ri

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

Move B,RJ
Add Ri,Rj
Move Rj,C

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

INSTRUCTION EXECUTION & STRAIGHT LINE SEQUENCING

* The program isS executed as follows:
1) Initially, the address of the first instruction is loaded into PC (Figure 2.8).
2) Then, the processor control circuits use the infgrmation in the PC to fetch and execute
instructions, one at a time, in the order of increasing addresses. This is called Straight-Line
sequencing.
3) During the execution of each instruction, PC is incremented by 4 to point to next instruction.

» There are 2 phases for Instruction execution:
1) Fetch Phase: The instruction is fetched from the memory-location and placed in the IR.
2) Execute Phase: The contents of IR is examined to determine which operation is to be performed.
The specified operation is then per armed by the processor.

i Move NUMIRO
i+4 Add NUM2RO
Aioesi Conteats i+8 Add NUM3RO
Begin cxccution here —e | Move ARO >
i+4 Add BRO program
i+8 Move ROC i+4n-4 Add NUMnRO
i+4n Move ROSUM
A ey .
. SUM
8 Data for NUMI
. P NUM2
C -
NUMn
Figure 28 A program for C « [A] + [B]. IFigure 2.9 A siraightline progrom for adding n numbers.

Program Explanation
» Consider the program for adding a list of n numbers (Figure 2.9).

» The Address of the memory-locations containing then numbers are s ymbolically given as NUMI,
NUM2NUMn.

« Separate Add instruction is used to add each number to the contents of register RO.
« After all the numbers have been added, the result is placed in memory-location SUM.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

BRANCHING
» Consider the task of adding a list of ,n“ numbers (Figure 2.10).

e Number of entries in the list ,n” is stored in memory-location N.
» register Rl is used as a counter to determine the number of times th eloop is executed.

« Content-location N is loaded into register R1 at the beginning of the program.
» The Loop is a straight line sequence of instruction s executed as many times as needed.

The loop starts at location LOOP and ends at th instruction Branch>0.
» During each pass,

..... > address of the next list entry is determined and

..... > that entry is fetched and added to RO.
» The instruction Decrement R1 reduces the contents of Rl by 1 each time through the loop.
» Then Branch Instruction loads a new value nto the program counter. As a result, the processor fetches
and executes the instruction at this new address called the Branch Target.
» A Conditional Branch Instruction causes a branch only if a specified condition is satisfied. If the condition
is not satisfied, the PC is incremented in the normal way, and the next instruction in sequential address
order is fetched and executed.

Move N.R1
Clear RO
LooP
J. Determine address of -
<~ "Next” numberand add -
Program “Next™ number to RO
loop
Decrement R1
Branch>0 LOOP
Move RO,SUM
SUM
N n
NUMI
NUM2
NUM~n

Figure 2.10 Using o loop to add n numbers.

CONDITION CODES
» The processor keeps track of information about the results of various operations. This is
accomplished by recording the required nformation in individual bits, called Condition Code Flags.
» These flags are grouped together in a special processor-register called the condition code register (or
statue register).
*« Four ommonly u d flags are:

1) N (negative) set to 1 if the result is negative, otherwise cleared to 0.

2) Z (zero) set to 1 if the result is O; otherwise, cleared to 0

3) V (overflow) set to 1 if arithmetic overflow occurs; otherwise, cleared to O.

4) C (carry) set to 1 if a carry-out results from the op eration; otherwise cleared to 0.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ADDRESSING MODES
» The different ways in which the location of an oPerand is specified in an instruction are referred to as
Addressing Modes (Table 2.1).

Yoble 2.1 Generic oddressing modes

Name Assembler syntax Addressing function

Immediate #Value Operand = Value

Regisier R EA=Ri

Absolute (Direct) LoC EA =LOC

Indirect ®Ri) EA = [Ri]

LoC) EA = [LOC]

- Index X(Ri) EA=[Ri]+X

Base with index Ri.R)) EA = [Ri] + [Rj]

Base with index X(Ri,Rj) ‘EA=[Ri]+[Rj] + X

and offset

Relative X(PC) EA = [PC] + X

Autoincrement (Ri)+ EA = [Rif;
Increment Ri

Autodecrement ~(Ri) Decrement Ri;
EA = [Ri)

EA = effective cddress

Yolve = o signed number

IMPLEMENTATION OF VARIABLE AND CONSTANTS
» Variable is represented by allocating a memory-location to hold its value.
* Thus, the value can be changed as needed using appropri te instructions.
* There are 2 accessing modes to access the variables:
1) Register Mode
2) Absolute Mode
Register Mode
» The operand is the content of a register.
*« The name (or address) of the register i given in the inst uction.
* Registers are used stemporary storage locations where the da a in a register are accessed.
* For example, the instruction
Move R , R2 ;Copy content of register Rl into register R2.
Absolute (Direct) Mode
» The operand isina memory-location.
* The address of memory-location is given explicitly in the instruction.
« The absolute mode can represent global variables in the program.
« For example, the instruction
Move LOC, R2 ;Copy content of memo y-location LOC into register R2.
Immediate Mode
» The operand is given explicitly in the instruction.
« For example, the instruction
Move #200, RO ; Place the value 200 in register R
* Clearly, the immediate mode is only used to specif the value of a source-operand.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

INDIRECTION AND POINTERS
e Instruction does not give the operand Or its address explicitly.
» Instead, the instruction provides information from which the rew address of the operand can be
determined.
* This address is caligl Effective Address (EA) of the operand.
Indirect Mode
* The EA of the operand is the contents of a register(or memory-location).
» The register (or memory-location) that contains the address of an operand is called a Pointer.
« We denote the indirection by
----, name o the register or
----, new address given in the instruction.
E.g: Add (R1),RO ;The operand is in memo y. Register Rl gives the effective-address (B) of the
operand. The data is read from location Band added to contents of register

RO.
nuv.
Add (RI),RO Add (A)RO
Main
memory
B Operand A B
R | B Register B Operand
(a) Through a general-purpose register (b) Through a memory location

Fioura 2 11 Indiract addraccina

» To execute the Add instruction in fig 2.11 (a), the processor uses the value which is in register RI, as
the EA of the operand.

* [t requests a read operation from the memory to read the contents of location B. The value read is the
desired operand, which the processor adds to the contents of register RO.

* Indirect addressing through a memory-location is also possible as shown in fig 2.ll(b). In this case,
the processor first reads the contents of memory-location A, then requests a second read operation using
the value Bas an address to obtain the operand.

e e e e e

Address Contents

Move N.RI
Move #NUMI R2 Initialization
Clear RO
—= LOOP Add (R2),RO
Add #4.R2
Decrement Rl
Branch>0 LOOP
Move RO,SUM

Figure 2.12 Use of indirect addressing in the program of Figure 2.10.

Program Explanation

» In above program, Register R2 is used as a pointer to the numbers in the list, and the operands are accessed
indirectly through R2.

< he initialization-section of the program loads the counter-value n from memory-location N into Rl and uses the
immediate address ng-mode to place the address value NUMI, which is the address of the first number in the list,
into R2. Then it clears RO to 0.

* The first two instructions in the loop implement the unspecified instruction block starting at LOOP.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

L e e —
» The first time through the op, the instruction Add (R2), RO fetches the operand at location NUMI and adds it to
RO.

« The second Add instruction adds 4 to the contents of the pointer R2, so that it will contain the address value
NUM2 when the above instruction is executed in the second pass through the loop.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

INDEXING AND ARRAYS
« A different kind of flexibility for accessing operands is useful in dealing with lists and arrays.
Index mode
» The operation is indicated as X(Ri)

where X=the constant value which defines an offset(also called a displacement).

Ri=the name of the index register which contains address of a new location.

» The effective-address of the operand is given by EA=X+[RI]
» The contents of the index-register are not changed in the process of generating the effective-
address.
* The constant X may be given either

—+as an explicit number or

-+ as a symbolic-name representing a numerical value.

Add 20(RI),R2 Add I000(RI).R2
. 1 1000 . 1 1R I 100 20
20=offsct . 20= offset
1 1020 Operan \J_ 1020 Operand
(a) Offset (b) Offset isInthe Index regisler

ligure2.13 Indexed addressing.

* Fig(a) illustrates two ways of using the Index mode. In fig(a), the index register, R1, contains the address
of a memory-location, and the value X defines an offset(also called a displacement) from this address to
the location where the operand is found.
* To find EA of operand:

Eg: Add 20(R1), R2

EA=>1000+20=1020

» An alternative use is illustrated in fig(b). Here, the constant X corresponds to a memory address, and
the contents of the index register define the offset to the operand. In either case, the effective-address
is the sum of two values; one is given explicitly in the instruction, and the other is stored in aregister.

Move rusr,RO
crear RI
N " Clfar R2
LIST StudeJ!IID Clear R3
UST,i4 Test Mm-e N,R4
UST+8 — Srudeal. J LOOP A A[II0),RI
M 8(Jt0),R2
LtST-t 12 Tesl3 Ada 1I(RO)K3
US'f-t 16 Sllideill.1ID Add #16,IW
Test1 Decleinfini Jl4
g Silldent2 — Brabdi>O 1.00P
Move RISUMI
T1t3
Move F.2,SUM2
R3,SUM3

Chaithrashree. A

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

Base with Index Mode
« Another version of the Index mode uses 2 registers which can be denoted as
Ri, Rj

. Herer(a seggnd register may be used to contain the offset X.
* The second register is usually called the base register.
» The effective-address of the operand is given by EA=[RIi]+[Rj]
» This for of indexed addressing provides more flexibility in ace ssing operands because

both components of the effective-address scan be changed.
Base with Index & Offset Mode
» Another version of the Index mode uses 2 registers plus a constant, which can be denoted as

X(Ri, Rj)
» The effective-address of the operand is given by EA=X+[Ri]+[Rj]
» This added flexibility is useful in accessing multiple components inside each item in a record, where
the beginning of an item is specified by the (Ri, Rj) part of the addressing-mode. In other words, this
mode implements a 3-dimensional array.

RELATIVE MODE
* This is similar to index-mode with one difference:

The effective-address is determined using the PC in place of the general purpos register Ri.
» The operation is indicated as X(PC).
+ X(PC) denotes an effective-address of the operand which is X locations above or below the cu rent
contents of PC.
» Since the addressed-location is identified "relative" to the PC, the name Relative mode is associated
with this type of addressing
« This mode is used commonly in conditional branch instructions.
* An instruction such as

Branch >0 LOOP ; Causes program execution o go to the branch target location

identified by name LOOP if branch condition is satisfied.

ADDITIONAL ADDRESSING MODES
1) Auto Increment Mode
) Effective address of operand is contents of a register specified in the instruction (Fig: 2.16).
D After ac cessing the operand, t h e contents of this register are automatically incremented to
point to the next item in a list.
| Implicitly, the increment amount is 1.
This mode is denoted as
(Ri)+ ; where Ri=pointer-register.
?2) Auto Decrement Mode
The contents of a register specified in the in instruction are first automatically decremented
and are then use as the effective address of the operand.
This mode is denoted as
-(Ri) ; where Ri=pointer-register.
} These 2 modes can be used together to implement an important data structure called a stack.

Move N.R1 }
Move #NUMI.R2 Initialization
Clear RO
— LOOP Add (R2)+,R0
Decrement Rl
Branch>0 LOOP
Move RO.SUM

Figure 2.16 The Autoincrement addressing mode used in the proaram of Figure 2.12,

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ASSEMBLY LANGUAGE
* We generally use symbolic-names to write a pro9ram.
» A complete set of symbolic-names and rules for their use cconstitute an Assembly Language.
» The set of rules for using the mnemonic dn the specification of complete instructions and programs is
called the Syntax of the language.
» Programs written in an assembly language can be automatically translated into a sequence of
machine instructions by a program called an Assembler.
» The user program in its original alphanumeric text formal is called a Source Program, and the
assembled machine language program is ailed an Object Program.
For example:
MOVE RO0,SUM ;The term MOVE represents OP code for operation performed by instruction.
ADD #5,R3 ;Adds number 5 to contents of register R3 & puts the result back into registerR3.

ASSEMBLER DIRECTIVES
» Directives are the assembler commands to the assembler concerning the program being assembled.
* These commands are not translated into machine opcode in the object-program.

Memory Addressing

address or data
label Operation information
Assembler directives SUM EQU 200
ORIGIN 204
N DATAWORD 100
NUM1 RESERVE 400
ORIGIN 100
Statements that START MOVE N,R1
generate MOVE #NUMI1,R2
machine CLR RO
instructions LOOP ADD (R2) RO
ADD #4.R2
DEC R1
BGTZ LOOP
MOVE RO,SUM
Assembler directives RETURN
END | START
Figure 218 Assembly lon tation for the program in Fiqure 2.17.

« EQU informs the assembler about the value of an identifier (Figure: 2.18).

Ex: SUM EQU 200 ;Informs assembler that the name SUM shou d be replaced by the value 200.
* ORIGIN tells the assembler about the starting-address of memory-area to place the data block.

Ex: ORIGIN 204 ;Instructs assembler o initiate data-block at memory-locations starting from 204.
- DATAWORD directive tells the assembler to load a value into the location.

Ex: N DATAWORD 100 ;Informs the assembler to load data 100 i to the memory-location N(204).
+ RESERVE directive is used to reserve a block of memory.

Ex: NUM1 RESERVE 400 ;declares a memory-block of 400 bytes is to be reserved f r data.
« END directive tells the assembler that this is the end of the source-program text.
< RETURN directive identifies the point at which execution of the program should be terminated.
« Any statement that makes instructions or data being placed in a memory-location may be given a
label. The label(say N or NUMI) is assig ed a value equal to the address of that location.

GENERAL FORMAT OF A STATEMENT
* Most assembly languages require statements in a source prog ram to be written in the form:
Label Operation Operands Comment
1) Label is an optional name associated with the memory-address where the machine language
instruction produced.
2) Operation Field contains the OP-code mnemonic of the desired instruction or assembler.
3) Operand Field contains addressing information for accessing one or more
operands, depending on the type of instruction.
4) Commaent Field is used for documentation purposes to make program easier to understand.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ASSEMBLY AND EXECUTION OF PRGRAMS
» Programs written in an assembly language are automatically translated into a sequence of machine
instructions by the Assembler.
« Assembler Program
..... > replaces all symbols denoting operations & addressing-modes with binary-codes used in
machine instructions.
----- > replaces all names and labels with their actual values.
..... > assigns addresses to instructions & data blocks, starting at address given in ORIGIN directive
----- > inserts constants that may be given in DATAWORD directives.
..... > reserves memory-space as requested by RESERVE directives.
« Two Pass Assembler has 2 passes:
1) First Pass: Work out all the addresses of labels.
P As the assembler scans through a source-program, it keeps track of all names of numerical-
values that correspond to them in a symbol-table.
2) Second Pass: Generate machine code, substituting values for the labels.
P When a name appears a second time in the source-program, it is replaced with its value from
the table.
» The assembler stores the object-program on a magnetic-disk. The object-program must be loaded
into the memory of the computer before it is executed. For this, a Loader Program is used.
» Debugger Program is used to help the user find the programming errors.
» Debugger program enables the user
----- >1t0 stop execution of the object-program at some points of interest &
..... >1t0 examine the contents of various processor-register and memory-location.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

BASIC INPUT/OUTPUT OPERATIONS
» Consider the problem of moving a character-code from the keyboard to the processor (Figure: 2.19).
For this transfer, buffer-reg jster DATAIN & a status control flags(SIN) are used.
* When a key is pressed, the corresponding ASCII code is stored in a DATAIN register associated with
the keyboard.
2 SIN=1 When a chgacter is typed in the keyboard. This informs the processor that a valid
character is in DATAIN.
| SIN=0 When the character is transferred to the processor.
» An analogous process takes place when characters are transferred f om the processor to the display.
For this transfer, buffer-register DATAOUT & a status control flag SOUT are used.
L SOUT=1 When the display is ready to receive acharacter.
SOUT=0 When the character is being transferred to DATAOUT.
» The buffer registers DATAIN and DATAOUT and the status flags SIN an SOUT are art of circuitry
commonly known as a device interface

DATAIN DATAOUT
Csin [sour
Keyboard Display

Figure 2.19 Bus connection for processor, keyboard, ond display.

Program to read a line of characters and display it

Move #LOC RO Initialize pointer register RO to point to the
address of the first Jocation in memory
where the characters are to be stored

READ TestBit #3,INSTATUS Wait for a character to be entered

Branch=0 READ in the keyboard buffer DATAIN.

MoveByte DATAIN,(R0) Transfer the character from DATAIN into
the memory (this clears SIN to 0).

ECHO TestBit #3,0UTSTATUS Wait for the display to become ready.

Branch=0 ECHO

MoveByte (R0),DATAOUT Move the character just read to the display
buffer register (this clears SOUT to 0).

Compare #CR,(R0)+ Check if the character just read is CR
(carriage return). If it is not CR, then

Branch#0 READ branch back and read another character.
Also, increment the pointer to store the
next character.

Figure 2.20 A progrom that reads o line of choracters and displays it.

MEMORY-MAPPED I/O
+ Some address values are used to refer to peripheral device buffer-registers such as DATAIN &
DATAOQOUT.
* No special instructions a e needed to access the contents of the registers; data can be transferred
between these registers and the processor using instructions such as Move, Load or Store.
» For example, contents of the keyboard character b fer DATAIN can be transferred to register Rl in
the processor by the instruction

Move Byte DATAIN,R1
* The Move Byte operation code signifies that the operand size is a byte.
» The Test bit instruction tests the state of one bit in the dessti nation, where the bit position to be
tested is indicated by the first opgrand.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

STACKS

» A stack is a special type of data structure where elements are inserted from one end and elements
are deleted from the same end. This end is called the top of the stack (Figure: 2.14).
« The various operations performed on stack:
1) Insert: An element is inserted from top end. Insertion operation is called push opertign.
2) Delete: An element is deleted from topend. Deletion operation is called pop operation.
» A processor-register is used to keep trac of the address of the element of the stack that is at the top
at any given time. This register is called the Stack Pointer (SP).
« If we assume a byte-addressable memory with a 32-bit word length,
1) The push operation can be implemented as
Subtract #4, SP
Move N WITEM, (SP)
2) The pop operation can be implemented as
Move (SP), IT M
Add #4, SP
« Routine for a safe pop and push operation as follows:

SAFEPOP Compare #2000SP Check to see if the stack pointer contains
Braoch>0 EMPTYERROR an address value greater than 2000. If it

does, the stack is empty. Branch to the
routine EMPTYERROR for appropriate

action.
Move (SP)+,ITEM Otherwise, pop the top of the stack iato
memory location ITEM.
(a) Routine for a sale pop operation
SAFEPUSH Compare #1500,SP Check to see if the stack poioter
Branch<0 FULLERROR contains an address value equal

to or less than 1500. If it does, the
stack is full. Branch to the routine
FULLERROR for appropriate action.
Move NEWITEM,~(SP) Otherwise, push the element in memory
location NEWITEM oato the stack.

(b) Routine for a safe push operation
Figure 2.23 Checking for emply and full erroes in pop and push operaions.

Stack
ponter
register

Current
twop clement

Bottom

| BOTTOM 43 - chement

\‘ 1

Figure 2.14 A stack of words in the memory.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

QUEUE
e Data are stored in and retrieved from a queue on a FIFO basis
e Difference between stack and queue?
1) One end of the stack is fixed while the other end rises and falls as data are pushed and popped.
2) In stack, a single pointer is needed tp keep track of top of the stack at any given time.
In queue, two pointers are needed to keep track of both the front and end for removal and
insertion respectively.
3) Without further control, a queue would continuously move through the memory of a computer in
the direction of higher addresses. On way to limit the queue to a fixed region in memory is to use
a circular buffer.

SUBROUTINES
» A subtask consisting of a set of instructions which is executed many times is called a Subroutine.
« A Call instruction causes a branch to the subroutine (Figure: 2.16).
« At the end of the subroutine, a return instruction is executed
* Program resumes execution at the instruction immediately following the subroutine call
* The way in which a computer makes it possible to call and return from subroutines is referred to as
its Subroutine Linkage method.
* T e simplest subroutine linkage method is to save the return-address in a specific location, which
may be a register dedicated tot is function. Such a register is called the Link Register.
* When the subroutine completes its task, the Return instruction returns to the calling-program by
branching indirectly through the link-register.
« The Call Instruction is a special branch instruction that performs the following operations:

-+ Store the contents of PC into link-register.

-+ Branch to the target-address specified by the instruction.
« The Return Instruction is a special branch instruction that performs the operation:

-+ Branch to the address contained in the link- register.

Memory Memory -
locaton Calling program location Subroutine SUB
200 Call SUB - 1000 first instruction

204 next instruction e—

Return

l 1
Link |] | 204 |

Call Return
Figure 2.16 Subroutine linkage using a link register

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

SUBROUTINE NESTING AND THE PROCESSOR STACK
* Subroutine Nesting Means one subroutine calls another subroutine.
« In this case, the return-address of the second call is also stored in the link-register, destroying its
previous contents.
* Hence, it is essential to save the contents of the link-register in some other location before calling
another subroutine. Otherwige, the return-address of the first subroutine will be lost.
« Subroutine nesting can be carried out to any depth. Eventually, the last subroutine called completes
its computations and returns the subroutine that called it.
« The return-address needed for this first return is the last one generated in the nested call sequence.
That is, return-addresses are generated and used in a LIFO order.
* This suggests that the return-addresses associated with subroutine calls should be pushed onto a
stack. A particular register is designated as the SP(Stack Pointer) to be used in this operation.
« SP is used to point to the processor-stack.
« Call instruction pushes the contents of the PC onto the processor-stack.

Return instruction pops the return-address from the processor-stack into the PC.

PARAMETER PASSING

« The exchange of information between a calling-program and a subroutine is referred to as
Parameter Passing (Figure: 2.25).

* The parameters may be placed in registers or in memory-location, where they can be accessed by
the subroutine.

« Alternatively, parameters may be placed on the processor-stack used for saving the return-address.
« Following is a program for a ding a list of numbers using subroutine with the parameters passed
through registers.

Calling program
Move N.R1 R1 serves as a counter.
Move #NUM1L,R2 R2 points to the list.
Call LISTADD Call subroutine.

Move RO SUM Save result.

Subroutine

LISTADD Clear RO Initialize sum to 0.

LOOP Add (R2)+,R0 Add entry from list.
Decrement Rl
Branch>0 LOOP
Return Return to calling program.

Figure 2.25 Progrom of Figure 2.16 written os o subroutine; paromeders passed through registers,

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

STACK FRAME
» Stack Frame refers to locations that constitute a private work-space for the subroutine.
* The work-space is
-+ Created at the time the subroutine is entered &
-+ freed up when the subroutine returns control to the calling-program (Figure: 2.26).

Program for adding a list of numbers using subroutine with
the parameters passed to stack.

Assume t.op Of staclc is at Jevel 1 Delow.

fol'e #NUMI,-(SP) Pash parameters ODlo stack.
Move N,-(SP)
Call IJ TADD Call broutine

(topof ad al lew:l 2)
Mm-e 4(SP), OM Save result
Add #8,SP Restore top of stack

(top of tack at Im-el 1).

IJSTADD Mo..-eMultiple RO-R2,-(SP) Save regi!,-teni

(t.op of stack at level 3). 1Avel3 = IR2]
MIM Hi(SP),RI Initialu.e counter to n. [RI]
Move 20(SP),R.2 Initialize pointer to the list. =0
Clear RO Initialize sum to 0. [RO]
LOOP Add (R2)+,RO Add entry from list. Level 2 == 1 Poturn address
Decremellt Rl N
Branch>0 LOOP
Move R0,20(SP) Putre.ulton the tack. NOMI
MoveMultiple (SP)+RO- R2 Rest-Ore register.. Level 1
Return Return to calling program.
() Calling program and SUbroullne (b) Top of slack al various limes
I..,.2.26 Ptogram of Figure 2.16 wri n eno subrouling; porometenJi0$sed on the shck.
I
SP
(slack pointer) saved [R1]
I saved [RO]
locllivat]
loca.l.nrZ
iiot;d'V/arl Slade
name
R &LYIId [F1] for
{frame pointer) nlkd
N - subl'ootinc
| parm.|
param'2
pacw
paiml
-rndms

Chaithrashree. A

fig, 2.1.7 A $Ubro111in& stack from example.
» Fig: 2.27 show an example of a commonly used layout for information in a stack-frame.

Chaithrashree. A

* COMPUTER ORGANIZATION AND ARCHITECTURE

« Frame Pointer (FP) is used to access the parameters passed
-> to the subroutine &
-> to the local memory-variables.

» The contents of FP remains fixed throughout the execution of the subroutine, unlike stack-pointer SP,
which must always point to the current top element in the stack.
Operation on Stack Frame
« Initially SP is pointing to the address of old TOS.
* The calling-program saves 4 parameters on the stack (Figure 2.27).
« The Call instruction is now executed, pushing the return-address onto the stack.
* Now, SP points to this return-address, and the first instruction of the subroutine is executed.
* Now, FP is to be initialized and its old contents have to be stored. Hence, the first 2 instructions in
the subroutine are:

Move FP,-(SP)

Move SP,FP
* The FP is initialized to the value of SP i.e. both FP and SP point to the saved FP address
» The 3 local variables may now be pushed onto the stack. Space for local variables is allocated by
executing the instruction

Subtract #12,SP
» Finally, the contents of processor-registers RO and RI are saved in the stack. At this point, the stack-
frame has been set up as shown in the fig 2.27.
» The subroutine now executes its task. When the task is completed, the subroutine pops the saved values
of Rl and RO back into those registers, removes the local variable from the stack frame by executing the
instruction.

Add #12, SP
» And subroutine pops saved old value of FP back into FP. At this point, S points to return-address, so the
Return instruction can be executed, transferring control back to the calling-program.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

STACK FRAMES FOR NESTED SUBROUTINES

« Stack is very useful data structure for holding return-addresses when subroutines are nested.

* When nested subroutines are used; the stack-frames are built up in the processor-stack.

Program to illustrat tack fram for nest ubroutine
Memory
location Instructlona Comments

Malnprogmm

2000 Move PARAM2,-(SP) Place parameter! qi stack
20fM Move P.ARAMI -{SP)

2008 Gall SIBI

2012 Move (SP),RFBIILT St.om remili.

2(1)6 Add #8,SP Rest01ce staclc levet

2020 next in$tl1lotion

First subroutine

2100 SUM Mo,...e FP,-(SP) Save frame pointer ngister.
2:104 Mow SP,FP Load the frame pohtter.
2108 Mo...eMldtple RO-R.11, SP) Saw registers.
2112 Mo’ B(FP},RO Get first parameter.

Muve 12(FP),RI G.1t 8a"-Olld parameter.

PARAMS,-(SP) Pla.oo a param.iteroo td;.

21611 SUB2

2164 (SP)+:R2 Pop SUB,2 result wto R.2.
Move 8(FPI Place anewer oii slieek.
MOVEMnlliple ~ (SP)+,RO-R3 Resto.re regll.t.ers,
Move (SP)+,FP tore fi.-ame])(linter r w
Retuni Return t.o Main program.

Second subroutine

3000 SuUB2 More FP,-(SP) Saw frame point« reglatet.
Move SP,FP Load the frame pointer.
MoveMwtipl.le Itoi-:RI, (SP) rey;lsJit.Oud RI.
Mo-¢ 8(FP),RO Get the paramerer
Move RI1,8(FP) Place SUE2 result on stacli:.
ifu,,, 3Mwtiple (SP)+,RO-RI Re.stare registers RO IWd RL
Mow (St>)+,PF R.estore frame pointer register.
Return Returo to Subnilll,tine L

Figure 2,28 Nested subroutines.

The Flow of Execution is as follows:

fP-

W-

[RIfromSUBI

[RO]t'romSUB!

[fP1 £roraSUBI

2164

[R3] from Maio

[R2J from Main

[:RI] from Main

[RO] from Main

[FP.I Imm Maill

2812

pmml

Std
fom.c-

JAELOIN
subroul.ioe

Sraiy):;
frame
for
f1"51.
silbrnuline

=— (ld TOS

Figure 2.29 Stock frames for Figure 2.28.

* Main program pushes the 2 parameters param?2 and paraml onto the stack and then calls SUBI.

Chaithrashree. A

* SUBI has to perform an operation & send result to the main-program on the stack (Fig:2.28 & 29).

» During the process, SUBI calls the second subroutine SUB2 (in order to perform some subtask).

» After SUB2 executes its Return instruction; the resultis stored in register R2 by SUBI.

« SUBI then continues its computations & eventually passes required answer back to main-program on the stack.
* When SUBI executes return statement, the main-program stores this answers in memory-location RESULT and
continues its execution.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

LOGIC INSTRUCTIONS
e Logic operations such as AND, OR, and NOT app ied to individual bits.
e These are the basic building blocks of digital-circuits.
» This is also useful to be able to perform logic operations is software, w fich is done using instructions
that apply these operations to all bits of a word or byte independently and in parallel.
» For example, the instruction
Not dst

SHIFT AND ROTATE INSTRUCTIONS
» There are many applications that require the bits of an opera d to be shifted right or left some
specified number of bit positions.
» The details of how the shifts are performed depend on whether the operand is a signed number or
some more general binary-coded infor ation.
« For general operands, we use a logical shift.
For a number, we use an arithmetic shift, which preserves the sign of the number.
LOGIC L SHIFTS
» Two logical shift instructions are
1) Shifting left (LShiftL) &
2) Shifting right (LShiftR).
» These instructions shift an operand over a number of bit positions spec fied in a count operand
conta ned in the instruction.

~—1' R3].—4, n_.[R3 '__E_.
m.m@ [or T 10 - - 01 1] befor:sfO 1T 1 1 0 . . 01 1] E]
uz:cr[I] I] 0 = & = O o0 0] ‘"“‘I“ 00 i1 § A0 e nI D
(a) Logical shift left LShifiL R3,#2 {b) Logical shift right LShiftR R3, #2
l—_,[\ R3 }_.E)—.

before [] 00 B & = & DL D l m

afie: [T 1 1001 1 - - - 0] D

(c) Arithmetic shift right AShiftR R3, #2

Figure 2.23 Logical and arithmetic shift instructions

Move #LOC,RD R0 points to data

MoveByte (RO)+,R1 Load first byte into R1.
LShiftL #4R1 Shift left by 4 bit positions.
MoveByte (R0),R2 Load second byte into R2.
And #$F R2 Eliminate high-order bits.
Or R1,R2 Concatenate the BCD digits.

MoveBvte R2ZPACKED Store the result.
Figure 231 A routine that packs two BCD digits.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ROTATE OPERATIONS
¢ In shift operations, the bits shifted out of the operand are lost, except for the |5t bit shifted out
which is retained in the Carry-fag C.
« To preserve all bits, a set of rotate instructions can be used.
» They move the bits that are shifted out of one end of the operand back into the other end.
» wo versions of both the left and right rota e tnstructions are usually provided. In

one version, the bits of the operand is simply ro ated.

In the other version, the rotation includes the C flag.

Py —]
wefone: IE | o 1 1 10 « « « 011 I
afier E' IHNEEEEEEEEE

(a) Rotate left without carry Rotatsl. R3, 82

LE._{ R3 !-J

\-:‘.-:‘-E |~:1||l:|---u!-.|
a:'lcrm Ill-a---i'-Llnul

(b) Rotate left with camy RotateLC R3, #2

L H@-

sefone: Iu i1 1 1 0 -~ - - |_!ll| m
afier |1 101 110 - - 0] E|

(c) Rotate right without carry RotateR R3, #2

sefone: |f5I1|f.:l---n1L] IIl
afler ||H|r|||u...;.| IIl

(d) Rotake right with carry RotaleRC R3, 22
Figure 2.25 Rotale instructicns.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ENCODING OF MACHINE INSTRUCTIONS
e To be executed in a processor, an instruction must be encoded in a binary-pattern. Such encoded
instructions are referred to as Mac hine Instructions.
» The instructions that use symbolic-names and acronyms are called assembly language instructions.
» We have seen instructions that perform operations such as add, subtract, move, shift, rotate, and
branch. These instructions mayy se operands of different sizes, such as 32-bit and 8-bit numbers.
» Let us examine some typical cases.
The instruction
Add RI, R2 ;Has to specify the registers Rl and R2, in addition to the OP code. If th processor
has 16 registers, then four bits are needed to identify each register. Additional bits
are needed to indicate that the Register addressing-mode is used for each operand.
The instruction
Move 24(R0), RS ;Requires 16 bits to denote the OP code and the two registers, and
some bits to express that the source operand uses the Index
addressing mode and that the index value is 24.

« In all these examples, the instructions can be encoded in a 32-bit word (Fig 2.39).
* The OP code for given instruction refers to type f operation that is to be performed.
« Source and destination field refers to sour e and destination operand respectively.
» The "Other info" field allows us to specify he additional information that may be needed such as an index
value or an immediate opera d.
» Using multiple words, we can implement complex instructions, closely resembling operations in high- level
programming language . The term complex instruction set computers (CISC) refers to processors that use
» CISC approach results in instructions of variable length, dependent on the number of operands and
the type of addressing modes use .
* In RISC (reduced instruction set computers), any instruction occupies only one word.
* The RISC approach introduced other restrictions such as that all manipulation of data must be done on
operands that are already in registers.

Ex: Add R1,R2,R3
* In RISC type machine, the memory references are limited to only Load/Store operations.

¥ ? 7 10
OP code Source Dest Ogher info
(2) One-word instruction
OP code Source Dest Onher info
Memory address/Immediate operand
(b) Two-word instruction
OP code Ri Ry Rk Other info

(c) Three-operand instruction
Figure 239 Encoding insirucfions info 32-bit words.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

Problem 1:
Write a program that can evaluate the expression A*B+C*D In a single-accumulator processor. Assume
that the processor has Load, Store, Multiply, and Add instructions and that all values fit in the
accumulator
Solution:
A program for the expression is:
Load A
Multiply B
Store RESULT
Load C
Multiply D
Add RESULT
Store RESULT

Problem 2:
Registers Rl and R2 of a computer contains the decimal values 1200 and 4600. What is the effective-
address of the memory operand in each of the following instructions?

(a) Load 20(RI), RS

(b) Move #3000,RS

(c) Store R5,30(RI,R2)

(d) Add -(R2),R5

(e) Subtract (R)+,RS

Solution:
(a) EA= [RI]+Offse =1200+20 = 1220
(b) A= 3000

(c) EA= [RI +[R2]+Offset = 1200+46 0+30=5830
(d) EA [R2]-1 = 4599
(e) EA= [RI] = 1200

Problem 3:
Registers Rl and R2 of a computer contains the decimal values 2900 and 3300. What is the effective-
address of the memory operand in each of the following instructions?
(a) Load RI,55(R2)
(b) Move #2000,R7
(c) Store 95(RI,R2),R5
(d) Add (RI)+,RS
(e) Subtract-(R2),R5
Solution:
a) Load RI,55(R2) This is indexed ad ressing mode. So E = 55+R2=55+3300=3355.
) Move #2000,R7 This is an immediate addressin mode. So, EA= 200
c) Store 95(RI,R2),R5 This is a variation of indexed address ng mode, in whic contents of 2
registers are added with the offset or i dex to generate EA. So
95+RI+R2=95+2900+3300=6255.
d) Add (RI)+,RS This is Autoincrement mode. Contents of Rl are the EA so, 2900 is the EA.
e) Subtract -(R2),R5 This is Auto decreme t mode. Here, R is subtracted by 4 bytes
(assuming 32-bt processor) to generate the EA, s , EA= 3300-4=3296.

P oblem 4:
Given a binary pattern in some memory-location, is it possible to tell whether this pattern represents a
machine instruction or a number?
Solution:
No; any binary pattern can be interpreted as a number or as an instruction.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

Problem 5:
Both of the following statements cause the value 300 to be stored in location 1000, but at different
times,
ORIGIN 1000
DATAWORD 300
And
Move #300,1000
Explain the difference.
Solution:
The assembler directives ORIGIN and DATAWORD cause the object program memory image
constructed by the assembler to indicate that 300 is to be placed at memory word location 1000
at the time the program is loaded into memory prior to execution.
The Move instruction places 300 into memory word location 1000 when the instruction is executed
as part of a program.

Problem 6:
Register RS is used in a program to point to the top of a stack. Write a sequence of instructions using
the Index, Autoincrement, and Autodecrement addressing modes to perform each of the following tasks:
(a) Pop the top two items off the stack, and them, and then push the result onto the stack.
(b) Copy the fifth item from the top into registe RS3.
(c) Remove the top ten items from the stack.
Solution:
(@) Move (RS)+,R0
Add (RS)+,R0
Move RO,-(RS)
(b) Move 16(RS),R3
(c) Add #40,R

Problem 7:
Consider the following possibilities for s ving the return address of a subroutine:
(@) nthe processor reg ster.
(b) In a memory-location associated with the call, so that a different location is used when the
subroutine is called from different place
(c) On a stack.
Which of these possibilities supports subroutine nesting and which supports subroutine recursion(that
is, a subroutine that calls itself)?
Solution:
(a) Neither nesting nor recursion is supported.
(b) Nesting is supported, because different Call instructions will save the return address at
different memory-locations. Recursion i not supported.
(c) Both nesting and recursion are supported.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

MODULE 2: INPUT/OUTPUT ORGANIZATION

e Each 1/0 device is assigned a unique se of address.

= Bus consists of 3 sets of lines to carry address, data & control signals.

* Whie processor places an address on address-lines, the in ended-device responds to the command.
» The processor requests either read or write-operation.

« The requested-data are transferred over the data-lines.

Processor Memory

Bus

VO device | /O device n

e There are 2 ays to deal with 1/O-devices: 1) Memory-mapped 1/0 & 2) 1/0- apped 1/0.
1) Memory-Mapped 1/0
Memory and 1/0O-device share a common address-space.
Any data-transfer instruction (like Move, Load) ca be used to exchange i formation.
For example,
Move DATAIN, RO; This instruction sends the contents of location DATAIN to register RO.
Here, DATAIN address of the input-buffer of the keyboard.
2) 1/0-Mapped 1/0
Memory and 1/0 address-spaces are different.
t A special instructions named IN and OUT are used for data-transfer.
Advantage o separate 1/0 space: 1/O-devices deal with fewer address-lines.
I/0 Interface for an Input Device
1) Address Decoder enables the device to recognize its address when this address
appears on the address-lines (Figure 7.2).
2) Stat s Register: contains information relevant to operation of 1/O-device.
3) Data Register: holds data being transferred to o from processor. There are 2 types:
i) DATAIN Input-buffer associated with keyboard.
i) DATAOUT Output data buffer of a display/printer.

Address lines

p
Bus < Data lines
\ Control lines
Address Control Data, status, and /0
decoder circuits control registers interface
I Input device]

Figure 7.2 1/O inferface for an input device.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

Interconnection network

'
General DATA DATA \
purpose ‘
. STATUS STATUS
Control CONTROL CONTROL |} |
registers
Interface Interface |
Processor Keyboard Display

Figure 3.2 The connection for processor, keyboard, and display.

MECHANISMS USED FOR INTERFACING I/0-DEVICES
1) Program Controlled I/0

Processor repeatedly checks status flag to achieve

required synchronization b/w processor & 1/0
device . (We say that the processor polls the
device).

* Main drawback:

The processor wastes time in checking status of device before actual data-transfer takes place.

2) Interrupt I/0

1/0-device initiates the action instead of the processor.
» 1/0-device sends an INTR signal over bus whenever it s ready for a data -transfer operation.
+ Like this, required synchronization is done between processor & 1/0 device.
3) Direct Memory Access (DMA)
» Device-interface tr ansfer data directly to/from the memory w/o continuous involvement by the
processor.
* DMA is a technique us d for high speed 1/0-device.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

INTERRUPTS

e There are many situations where other tasks can be pelformed while waiting for an I/0O device to

become ready.

« A hardware signal cajjed an Interrupt will alert the processor when an 1/0 device becomes ready.

* Interrupt-signal is sent on the interrupt-request line.

» The processor can be performing its own task without the need to continausly check the 1/0-device.

* The routine executed in response to an interrupt-request is called ISR.

» The processor must inform the device that its request has b een recognized by sending INTA signal.
(INTR Interrupt Request, INTA Interrupt Acknowledge, ISR Interrupt Service Routine)

* For example, consider COMPUTE and PRINT routines (Figure 3.6).

Program | Program 2

COMPUTE routine DISPLAY routine

=

Interrupt
OCCUIS !
here

M

M

Figure 3.6 Transfer of control through the use of interrupts.

* The processor first completes the execution of instruction i.
» Then, processor loads the PC with the address of the first instruction of the ISR.
» After the execution of ISR, the processor hasto ¢ ome back to instruction i+I.
» Therefore, when an interrupt occurs, the current content of PC is put in temporary storage location.
* A return at the end of ISR reloads the PC from that temporary storage location.
* This causes the execution to resume at instruction +1.
* When processor is handling interrupts, it must inform device that its request has been recognized.
» This may be accomplished by I TA signal.
* The task of saving and restoring the information can be done automatically by the processor.
* The processor saves only the content of PC & Status register.
» Saving registers also increases the Interrupt Latency.
 Interrupt Latency is a delay between
..... > time an interrupt-request is received and
..... > start of the execution of the ISR.
» Generally, the long interrupt latency in unacceptable.

Difference between Subroutine & ISR

Subroutine ISR
A subroutine performs a function required by the ISR may not have anything in common with
program from which it is called. program being executed at time INTR is received
Subroutine is just a linkage of 2 or more function [Interrupt is a mechanism for coordinating 1/O
related to each other. transfers.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

INTERRUPT HARDWARE
e Most computers have several I/O devices tha can request an interrupt.
* A single interrupt-request (IR) i t

ne may be used to serve n devices (Figure 4.6).
 All devices are connected to IR line via switches to ground.
* To request an interrupt, a device closes its associated switch.
» Thus, if all IR signals are inactive, the voltage on the IR line will e equal to vadd,
* When a device requests an interrupt, the voltage n the line drops to 0.
» This causes the INTR received by the processor to go to 1.
* he value of INTR is the logical OR of the requests from individual device
INTR=INTR1+ INTR2+............ +INTRnN
» A special gates known as o en-collector or open-drain are used to drive the INTR line.
» The Output of the open collector control is eq al to a switch to the ground that is
..... > open when gates input is in "O" state and
----- > closed whe the gates input is in "1" state.
* Resistor R is called a Pull-up Resistor because
it pulls the line voltage up to the high-voltage state when the switches are open.

Va
Processor

INTR

R —o<}

H— INTRI — INTR2 -+ — INTRx

{_
i 1

H
L

Figure 4.6 An equivalent circuit for an opendrain bus used to implement a common
inferrupt-request line.

ENABLI G & DISABLING INTERRUPTS
» All computers fundamentally should be able to enable and disable interruptions as desired.
* The problem of infinite loop occurs due to successive interruptions of active INTR signals.
* There are 3 mechanisms to solve problem of infinite loop:

1) Processor should ignore the interrupts until execution of first instruction of the ISR.

2) Processor should automatically disable interrupts before starting the execution of the ISR.

3) Processor has a special INTR line or which the interrupt-handling circuit.

Interrupt-circuit responds only to leading edge of s ignal. Such line is called edge triggered.

» Sequence of events involved in handling an interrupt-request:

1) The device raises an interrupt-request.

2) The processor inte rrupts the program currently being executed.

3) Interrupts are disabled by changing the control bits in the processor status register (PS).

4) The device is informed that its req u e st has been recognized.

In response, the device deactivates the interrupt-request signal.
5) The action requested by the interrupt is performed by the interrupt-service routine.
6) Interrupts are enabled and execution of he interrupted program is resumed.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

HANDLING MULTIPLE DEVICES
* While handling multiple devices, the issues concerned are:

1) How can the processor recognize the device requesting an interrupt?
2) How can the processor obtain the starting address of the appropriate ISR?

3) Should a device be allowed to interrupt the processor w ije another interrupt is being
serviced?
4) How should 2 or more simultaneous interrupt-requests be handled?

POLLING
 Information needed to determine whether device is requesting interrupt is available in status-register

* Following condition- odes are used:
DIRQ Interrupt-request for display.

KIRQ Interrupt-request for keyboard.
KEN keyboard enable.
DEN Display Ena le.

} IN, SOUT status flags.
* Forani put de ice, SIN status flag in used.

SIN=1 when character is entere d att e keyboard.

SIN = 0 when the character is read y processor.
IRQ=I when a device raises an interrupt-requests (Figure 4.3).

» Simplest way to ident fy interrupting-device is to have ISR poll all devices connected to bus.
* The first device encountered with i s IRQ bit set is serviced.
» After servicing first device, next requests may be serviced.
» Advantage: Simple & easy to implement.

Disadvantage: More time spent polling IRQ bits of all devices.

DATAIN I I

DATAOUT I |

STATUS [I] I [umq[xmolsourl SIN I

i | | | Jesjem] | |

0

7 6 5 4 3 2 1
Figuwre 4.3 Regislers in keyboard and display inferfoces.

Move #LINE,RO Initialize memory pointer
WAITK TestBit #0STATUS Test SIN.
Branch=0 WAITK Wait for character to be entered
Move DATAIN,RI Read character
WAITD TestBit #1 STATUS Test SOUT.
Branch=0 WAITD Wait for display to become ready.
Move R1,DATAOUT Send character to display.
Move R1(RO)+ Store charater and advance pointer
Compare #80D,R1 Check if Carriage Return.
Branch#£0 WAITK 1f not, get another character.
Move #$0A, DATAOUT Otherwisc, send Lioe Feed.
Call PROCESS Call a subroutine to process the

the input line.
Figure 4.4 A progrom thot reads one line from the keyboord, sicres it in memory buffer, and echoes it back lo the display.

VECTORED INTERRUPTS
» A device requesting an interrupt identifies itself by sending a special-code to processor over bus.
s Then, the processor starts executing the ISR.
» The special-code indicates starting-address of ISR.
» The special-code length ranges from 4 to 8 bits.
* The location pointed to by the interrupting-device is used to store the staring ad dess to ISR.
» The staring address to ISR is called the interrupt vector.
» Processor
--> |loads interrupt-vector into PC &
..... > executes appropriate IS R.
* When processor is ready to receive interrupt-vector c gle, it activates INTA line.

ﬁ‘ N
Chaithrashree. A s

COMPUTER ORGANIZATION AND ARCHITECTURE

* Then, -device responds by sending its int rrupt-vector code & turning off the signal.
* The interrupt vector also include a new value for the Processor Status Register.

CONTROLLING DEVICE REQUESTS
» Folloying condit on-codes are used:
E KEN Keyboard Interrupt Enable.
DEN Display Interrupt Enable.
} KIRQ/DIRQ Keybord/Display unit requesting an interru pt.
» There are 2 independent metho s for controlling interrupt-requets. (IE inerrupt-enable).
1) At Device-end
IE bit in a contrl-register determines whether device is allowed to generate an interrupt-r quest.
2) At Processor end, interrupt-request is determined by
..... >|E bit in the PS register or
—> Priority structure

Main Program
Move #LINEPNTR Initialize buffer pointer.
Clear EOL Clear end-of-live indicator.
BitSet #2 CONTROL Enable keyboard interrupts.

BitSet #9PS Set interrupt-enable bit in the PS.

" Interrupt-service routine

READ MoveMultiple RO-R1,~(SP) Save registers RO and R1 on stack.

Move PNTR,RO Load address pointer.
MoveByte ~ DATAINRI Get ioput charscter and
MoveByte R1,(RO)+ store it in memory.
Move RO,PNTR Update pointer.
CompareByte #S0D,R1 Check if Carriage Return.
Branch#0 RTRN

Move #1,EOL Indicate end of line.

BitClear #2,CONTROL Disable keyboard interrupts.
RTRN MoveMultiple (SP)+,R0-R1 Restore registers R0 and R1.
Return-from-interrupt

Figure 4.9 Using interrupls %o read o line of charocters from o keyboard via the regisers in Figure 4.3

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

INTERRUPT NESTING
e A multiple-priority scheme is implemented bY using separate INTR & INTA lines for each device
e Each INTR line is assigned a differe nt priority-level (Figure 4.7).
* Priority-level of processor is the priority of program that iscurrently being executed.
» Processor accepts interrupts only fro m devices that have higher-priority than its own.
+ At the time of execution of ISR for some device, priority of processor is raised to that of the device.
» Thus, interrupts from devic sat the same level of priority or lower are disabled.
Privileged Instruction
* Processor's priority is encoded in a few bits of PS word. (PS Processor-Status).
» Encoded-bits can be changed by Privileged Instructions that write into PS.
* Privileged-instructions ¢ n be executed only while processor is running in Supervisor Mode.
» Processor is in supervisor-mode nly when executing operating-system routines.
Privileged Exception
» User program cannot
..... > accidently or intentionally change the priority of the processor &
--> disrupt the system-operation.
» An attempt to execute a privileged-instruction while in user-mode leads to a Privileged Exception.

72 INTR! INTRp
E Device | Device 2 oo Device p
INTAI INTAp

Priority arbitration
circuit

Figure 4.7 Implementation of interrupt priorily using individua! inferrupirequest ond
arknrudadaa linae

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

SIMULTANEOUS REQUESTS l
e The procer?sgr must have some mechanisms o decide which request to service when simultan€ous

[emlﬁgtﬁnaer is comm _n to all devices (Figure 4.8a).
* INTA line is connected in a daisy-chain fashion.
* INTA signal propagates serially through devices.
* When several devices raise n interrupt-request, INTR line is activated.
» Pocessor responds by setting INTA line to 1. This sig al is received by device 1.
» Device-! passes signal on to device 2 only if it d es not require any service.
« If device-! has a pending-request for interrupt, the device-!
----, blocks INTA signal &
----, proceeds to put its identifying-code on data | ines.
 Device that is electrically closest to processor has highest priority.
+ Advantage: It requires fewer wires than the individual c onnections.
Arrangement of Priority Groups
* Here, the devices are organized in groups & each group is connected at a different priority level.
» Within a group, devices are connected in a daisy chain. (Figure 4.8b).

INTR

Processor
¥
-3
"

Device2 = +++ ~! Device n

INTA
(a) Daisy chain
INTRI
—.1 |
é INTAT Device Device f——e
INTRp

T I—ﬂ Device Device f——

Priority arbitration
circuit

{b) Arrangement of priority groups
Figure 4.8 Inferrupt priority schemes.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

EXCEPTIONS
* An interrupt is an event that causes
— execution of one program to be suspended &
— execution of another program to begin
» Exceptio n refers to any event that causes an interruption. For ex: 1/0 interrupts.
1. Recovery from Errors
* These are technique to ensure that all hardware components are operating properly.
» For ex: Many compute s include an ECC in memo Yy which allows detection of errors in stored-data.
(ECC Error Checking Code, ESR Exception Service Routine).
« If an error occurs, control-hardware
> detects the errors &
--> informs processor by raising an interrupt.
* When exception processing is initiated (as a result of errors), processor.
> suspends program being executed &
> starts an ESR. This routine takes appropriate action to recover from the error.
2. Debugging
« Debugger
—->is used to find errors in a program and
--> uses exceptions to provide 2 important facilities: i) Trace & ii) Breakpoints
i) race
* When a processor is operating in trace-mode, an exception occurs after execution of every instruction
(using debugging-program s ESR).
« Debugging-program enables user to examine contents of registers, memory-locations and so on.
« On return from debugging-program
next instruction in program being debugged is executed,
then debugging-program is activated gain.
* The trace exception is disabled during the execution of the debugging-program.
ii) Breakpoints
« Here, the program being debug ed is interrupted only at specific points selected by user.
« An instruction called Tap (or Software interrupt) is usually provided for this purpose.
* When program is executed & reaches break point, the user can examine memory & register contents.
3. Privilege Exception
* To protect OS from being corrupted by user-programs, Privileged Instructions are executed only
while proessor is in supervisor mode.
* Fore.g.
When processor runs in user-mode, it will not execute instruction that change priority of processor.
* An attempt to execute privileged-instruction will produce a Privilege Exception.
» As a result, processor switches to supervison -mode & begins to execute an appropriate routine in OS.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

DIRECT MEMORY ACCESS (DMA)
e The transfer of a block of data direct y b/w an external device & main-memory w/o continuous
involvement by processor is called DMA.
« DMA controller
---.is a control circuit that performs DMA transfers (Figure 8.13).
---.is a part of the 1/0 device interface.
---. performs th functions that would normally be carried out by processor.
« While a DMA transfer is taking place, the processor can be used to execute another program.

Processor I

Bridge Main
- d Memory

PCl bus
Disk/DMA DMA
controller controller
Disk I Disk Ethemet
mnleriace

Fiqure 8.13 Use of DMA controllers in o comouter syslem

- DMA interface has three registers (Figure 8.12):
1) First register is used for storing starting-address.
2) Second register is sed for storing word-count.
3) Third register continues status- & control-flags.

31 30 | 0

Status and control l l I I l]
RrRQ —I L_ Done
IE J li R/W

Starting address I l

Word count []

Figure 8.12 Typical registers in o DMA controller.

The R/W bit determines direction of transfer.
If R/W=I, controller performs a r ad-operation (i.e. it transfers data from memory t 1/0),
Otherwise, controller performs a write-operation (i.e. it transfers data from 1/0 to memory).
If Done=1, the controller
---. has completed transferring a block of data and
---.is ready to receive another command. (IE Interrupt Ena le).
If IE=1, controller raises an interrupt after it has completed transferring a block of data.
If IRQ=I, controller requests an interrupt.
Requests by DMA devices for using the bus are always given higher priority than proce sor requests.

» There are 2 ways in which the D A operation can be carried out:
1) Processor originates most memory-access cycles.

DMA controller is said to steal" memory cycles from processor.
4 Hence, this technique is usually called Cycle Stealing.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

2) DMA cortroller is given exclusive access to main-memory to transfer a blo & of data without
any interruption. This is known as Block Mode (or burst mode).

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
YRR —— — — ——

BUS ARBITRATION
« The device that is allowed to initiate data-transfers on bus at any given time is called bus-master.
« There can be only one bus-master at any given time.
* Bus Arbitration is the process by which
---. next device to become the bus-master is selected &
---. bus-mastership is transferred to that device.
* The two approaches are:
1) Centralized Arbitration: A single bus-arbiter performs the required arbitration.
2) Distributed Arbitration: All devices participate in selection of next bus-master.
» A conflict may arise if both the processor and a DMA controller or two DMA controllers try to use the
bus at the same time to access the main-memory.
» To resolve this, an arbitration procedure is implemented on the bus to coordinate the activiti s of all
devices requesting memory transfers.
« The bus arbiter may be the processor or a separate unit connected to the bus

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

CENTRALIZED ARBITRATION
* A single bus-arbiter performs the required arbitration (Figure: 4.20).
» Normally, processor is the bus-master.
* Processor may grant bus-mastership to one of the DMA controllers.
« A DMA controller indicates that it needs to become bus-master by gtivating BR line.
» The signal on the BR line is the logical OR of bus-requests from all devices connected to it.
» Then, processor activates BGI signal in dicating to DMA controllers to use bus when it becomes free.
* BGI signal is connected to all D A controllers using a daisy-chain arrangement.
< If DMA controller-1 is requesting the bus,
Then, DM controller-1 blocks propagation of grant-signal to other devices.
Otherwise, MA controller-1 passes the grant downstream by asserting BG2.
< Current bus-master indicates to all devices that it is using bus by activating BBSY line.
« The bus-arbiter is used to coordinate th activities of all devices requesting memory transfers.
» Arbiter ensures that only 1 req est is granted at any given time according to a priority scheme.
(BR Bus-Request, BG Bus-Grant BBSY Bus Busy).

BBSY
BR
Processor
DMA DMA
controller »| controller f——
BGI 1 BG2 2

Figure 4.20 A simple arrangement for bus arbitration using @ dai: 7

chain.

"T*
|

BG2 ‘lq ‘L__

sasY F | _r—||_
I |

— Time

Bus

o Processor DMA controller 2 Processoc
Figure 4.21 Sequence of signals during transfer of bus mastership for the devices in
Figure 4.20.

< The timing diagram shows the sequence of events for the devices connected to the rocessor.
- DMA c ntroller-2

----, reque ts and acqui es bus-mastership and

----, later releases the bus. (Figure: 4.21).
» After DMA controller-2 rel eases the bus, the processor resources bus-mastership.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

DISTRIBUTED ARBITRATION

» All device participate in the selection of next bus-master (Figure 4.22).
e Each device on bus is assigned a 4-bit identification nymber (ID).

« When 1 or more devices request bus, they
---. assert Start-Arbitr gtion signal &
---. place their 4-bit ID numbers on four open-collector lin es—gmp through aRrp3

« A winner is selected as a result of interaction among signals transmitted over these lines.
* Net-outcome t the cod ne represents request that has the highest ID number.

« Advantage:
This approach offers highely reliability since operation of bus is not dependent on any single device.

T ARB3
ARB2
ARBI
ARBO

Interface circuit
for device A

Figure 4,22 A distributed arbitration scheme.

For example:
A sume 2 devices A & B have their ID 5 (0101), 6 (0110) and their code is 0111.
Each device compares the pattern on the arbitration li e to its own ID starting from MSB.
If the device detects a difference at any it position, it disables the drivers at that bit position.
Driver is disabled by placing "O" at the input of the driver.
In e.g."A" detects a difference in line ARB!, hence it disables the dr ivers on lines ARB! & ARBO.
This causes pattern on arbitrati n-line to change to 0110. This means that "B" has won
contention.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

0000000000000}
BUS
* Bus
..... > is used to inter-connect main-memory, processor & 1/0-devices
..... > includes lines needed to support interrupts & arbitration.
« Primary function: To provide a communication-path for transfer of data.
* Bus protocol is set of rules that govern the behavior of various devices connected to the buses.
« Bus-protocol specifies parameters such as:
--> asserting control-signals
..... > timing of placing information on bus
--> rate of data-transfer.
- Atypical bus consists of 3 sets of lines:
1) Address,
2) Data &
3) Control lines.
« Control-signals
..... > specify whether a read or a write-operation is to be performed.
..... > carry timing information i.e. they specify time at which 1/0-devices place data on he bus.
* R/W line specifies
..... > read-operation when R/W=l.
..... > write-operation when R/W=0.
» During data-transfer operation,
k One device plays the role of a bus-master.)
Master-device Initiates the data-transfer by issuing read/write command on the bus.
®» The device addressed by the master is called as Slave.
» Two types of Buses: 1) Synchronous and 2) Asynchronous

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

SYNCHRONOUS BUS
» All devices derive timing-information from a common clock-line.
« Equally spaced pulses on this line define equal time intervals.
« During a "bus cycle", one data-transfer can take place.
A sequence of events during a read-operation
» At time to, the master (processor)
----, places the device-address on address-lines &
----, sends an appropriate command on control-lines (Figure 7.3).
* The command willg
----, indicate an input operation &
----, specify the length of the operand to be read.
» Information travels over bus at a spe d determined by physical & electrical characteristics.
» Clock pulse width(ti-to) must be anger than max. propagation-delay b/w devices connected to bus.
* The clock pulse width should e long to allow the devices to decode the address & control signals.
» The slaves take no action or place ny data on the bus before tl.
» Information on bus is unreliable during the period toto t1 because signals are changing state.
» Slave places requested input-da a on data-lines at time t1.
« At end of clock cycle (at time t2), master strobes (captures) data on d ta-lines into its input-buffer
* For data to be loaded correctly into a storage device,
data must be available at input of that device for a period greater than setup- ime of device.

— = Time

Clock cycle

Bus clock
Adddress and -—~.|"|r
Ccommand n
Diata

Fiﬂurﬂ ?.3 TImII'H'I C:l{ an input 1'IT.II'IS!:E'F on a wnchrr:n:m; I:iUS

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

A Detailed Timing Diagram for the Read-operation

S— T T

Bus clock

Tam

Address and
command X X
{)_
Data \

DM

Address and X X
command
. /
Data \ >—

Ips

fo I i

Figure 7.4 A dekailed timing diogram for the input transfer of Figure 7.3.

The picture shows the signal seen by the master & the other is s en by the salve.

» Master sends the address & command signals on the risin edge at the beginning of clock period (to).
» These signals do not actually a pear on the bus until tam.
* Sometimes later, at tAs the signals reach the slave.
* The slave decodes he address.
At t1, the slave sends the requested-data.
At tz, the master loads the data into its input-buffe .

» Hence the period tz, toM is th setup time for the master's input-buffer.

* The data must be continued to be valid after tz, for a peri d equal to the hold time of that buffers.
Disadvantages

* The device does n t respond.

» The error will not be detected.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

Multiple Cycle Transfer for Read-operation

—e 1IN

Clock

Address X X
Command X X

Data { _)——

Slave-ready

Figure 7.5 An input transfer using multiple clock cycles.

e d" operation.
* The slave receives & decodes a dress/command information (Figure 7.5).
» At the active edge of the clock i.e. the beginning of clo k cycle-2, it makes accession to respond
immediately.
* The data become re dy & are placed in the bus at clock cycle-3.
+ At the same times, the slave asserts a control signal called slave-re dy.
* The master strobes the data to its input-buffer at the en of clock cycle-3.
» The bus transfer operation is now complete.
* And the aster sends a new address to start a new transfer in clock cycle4.
* The slave ready signal is an acknowledgement from the save to the master.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ASYNCHRONOUS BUS
» This method uses handshake-signals between m ster and slave for coordinating data-transfers.
¢ There are 2 control-lines: a

1) Master-Ready (MR) is used to indicate that master is ready for a transaction.
2) Slave-Ready (SR) is u ed to indicate that slave is gady for a transaction.
The Read Operation proceeds as follows:
» At to, master paces address/command information on bus.
« At tl, master sets MR-signal to 1 to inform all devices that the address/command-info is ready.

MR-signal =1 causes all devices o the bus to decode the address.
The delay t1 - to is intended to allow for any skew that may occurs o the bus.

Ske occurs when 2 signals transmitted from 1 source arir ve at destination at different time

} Therefore, the delay t1 - to should b larger than the maximum possible bus skew.
* At b, slave
----, performs required input-operatic &
----, sets SR signal to 1 to inform all devices that it is ready (Figure 7.6).
« At t3, SR ignal arrives at master indicating that the input-data are available on bus.
+ At t4, master removes address/command in formation from bus.
» Atts, when the device-interface receives the 1-to-0 transition o MR signal, it removes data and SR
signal from the bus. This computes the input transfer.

—_— = Time

Address
and command P cmmenr
Master-ready ~ e
) . p
‘ \ . \
Slave-ready T s \
——

Data - \()—

Bus cycle

Figure 7.6 Handshake control of data transfer during an input operation

* A change of state is one signal is followed by a change is the other signal. Hence this scheme is
called as Full Handshake.
+ Advantage: It provides the higher degree of flexibility and reliability.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

MODULE 2: INPUT/OUTPUT ORGANIZATION (CONT.)

Interface Circuits:
* An I/O Interface t an 1/0 device to a computer-
bus.

* On one side of the interface, we ha e bus signals.

On the other side, we have a data path with its associated controls to transfer data etween the
interface and the 1/0 device known as port.
* Two types are:
1. Parallel Port transfers data in the form of a number of bits (8 or 16) simultaneously to or
from the device.
2. Serial Port transmits a d receives data one bit at a time.
« Communication with the bus is the same for both formats.
* The conversion from the parallel to the serial format, and vice versa, takes place inside the interface-
circuit.
* In parallel-port the connection between the device and the computer uses
----- , @ multiple-pin connector and
----- , a cable with as many wires.
This arrangement is suitable for devices that are physically close to the computer.
* In serial port, it is much more convenient and ost-effective where longer cables are needed.
Functions of /0 Interface
1) Provides a storage buffer for at least one word of data.
2) Contains status-flags that can be accessed by the processor to determine whether the buffer
is full or empty.
3) Contains address- ecoding circuitry to determine when it is being addressed by the
processor.
4) Generates the appropriate timing signals required by the bus control scheme.
5) Performs any format conversion that may be necessary to transfer data between the bus and
the 1/0 device (such as parallel-serial conversion in the case of a serial port).

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

PARALLEL-PORT
KEYBOARD INTERFACED TO PROCESSOR

Input interface

Data

[\ ,Data

Address " KBD_DATA K

.
V4

R/ Encoder
Processor | "~ KBD STATUS circunt

Master-ready Vahd
- -

Slave-ready

Keyboard
swilches

Figure 7.10 Keyboard to processor connection.

e The output of the encoder consists of

— bits representing the encoded character
--> one signal called valid, which indicates the ke is pressed.

* The information is sent to the interface-circuits (Figure 7.10).
* Interface-circuits contain
1) Data register DATAIN &
2) Status-flag SIN.
* When a key is pressed, the Valid signal changes from tol.
Then, SIN=1 when ASCII co e is loaded into DATAIN.
S N=0 when process r reads the contents of the DATAIN.
» The interface-circuit is connected to the asynchronous bus.
» Data transfers n the bus are controlled using the handshake signal
1) Master ready &
2) Slave ready.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

INPUT-INTERFACE-CIRCUIT

DAT.AIN
_
D7 \/J Q b
. : Keybwrd
2 Z data
00— ——rs o +—<Q Q D
A
1 ‘
\H SEN Status Valid
flag
l ——
Slave-
Read-
ready ke
PN U Read
;; QIII
Jttw A--H-+ - "
Muter-
ready ———4--—-+-A-+}}F-——-+-t+ -——-- '
A3l .. Bdcfrcu
dmidet) |
fg‘ - 1 J

Figure 4.29: Input-interface-circuit

Master-ready ——') '

@ pl—1

o Valid
e

Figul114.30 Circ;uitfor the s'ldtiB Rog block in Fig,ure4.29.
» Output-lines of DATAIN are connected to the data-lines of bus by means of 3-state drivers (Fig 4.29).
 Drivers are turned on when

..... > processor issues a read signal and

--> address selects DATAIN.
» SIN signal is generated using a status-flag circuit (Figure 4.30).

SIN signal is connected to line Do of the processor-bus using a 3-state driver.
» Address-decoder selects the input-interface based on bits Al through A31.

SIN
Read-dm

Chaithrashree. A

» Bit Ao determines whether the status or data register is to be read, when Master-ready is active.
» Processor activates the Slave-ready signal, when either the Read-status or Read-data is equal to 1.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

PRINTER INTERFACED TO PROCESSOR

Output interface

Data
> Data Al
Address DISP_DATA -
—-> —
Y, Ready
oSS R/W - Display
Processor DISP STATUS piay
Master-ready
New-data
Slave-ready

Figure 7.13 Display to processor connection.

e Keyboard is connected to a processor using a parallel-port.
e Processor uses

— memory-mapped I/0
and

----, asynchronous bus protocol.
* The processor-side of the interface, we have:
----, Data-lines
Address-lines
----, Control or R/W line
----, Master-Ready signal and
----, Slave- ready signal.
* On the keyboard-side of the interface, we have:
----, Encoder-circuit which generates a code for the key pressed.
_, Debouncing-circuit which eliminates the effect of a key.
----, Data-lines which contain the code for the key.
----, Valid line changes from Oto 1 when the key is pressed. This causes the code to be loaded
into DATAIN and SIN to be setto 1.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

GENERAL 8 BIT PARALLEL PROCESSING

7 4 2]
. DATAIN
D0 < 0
.
i P
DATAOUT -
N
1 7o
-
Data
Directson
Register
My-address
RS2 ——=
B Stwus f—— CI
RS) ——ei Al wd
R e ! cootol Ly o 2
Ready
ACCEPl]
INTR

Figure 4.34: General 8 bit parall€l interface

Data-lines P7 through Po can be used for either inputor output purposes (Figure 4.34).

* For increased flexibility,
----- > some lines ca be used as inputs and
--> some lines can be used as outputs.
» The DATAOUT register is connected to data-lines via 3-state drivers that are controlled by a DDR.
* The processor can write any 8-bit pattern into DDR. (DDR Data Direction Register).
If DDR=I,
Then, data-line acts as an output-I ne;
Otherwise, data-line acts as an input-line.
* Two line , C1 and C2 are used to control he interaction between interface-circuit and 1/0 device.
Two lines, C1 and C2 are also programmable.
* Line C2 is bidirectional to provide different modes of signaling, including the handshake.
* The Ready and Accept lines are the han dshake control lines on the processor-bus side.
Hence, the Ready and Accept lines can be connecteded to Master-ready and Slave-
ready.
* The input signhal My-address should be connected to the output of an address-decoder.
The address-decoder recognizes the address assigned to the interface.
* There are 3 register select lines: RS0-RS2.
Three register select lines allows up to eight registers in the interface.
* An interrupt-request INTR is also provided.
INTR should be connected to the interrupt-request line on the computer-bus.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

STANDARD I/0 INTERFACE
« Consider a computer system using different interface standards.

e Let us look in to Processor bus and Peripheral Component Inter onnect (PCI) bus (Figure 4.38).
» These two buses are interconnected by a circuit called Bridge.

* The bridge translates the signals and protocols of one bus into ano ther.
» The bridge-circuit introduces a small delay in data tran §er between processor and the devices.

Main
Processor memory
l |
] Processor bus
Bridge
] PCI bus
l I l l I
Additional SCS! Ethernet USB ISA
memory controlier interface controlier incerface
SCSI bus l
IDE
[r Video -
Disk CD-ROM
controller controlier
g o]
Disk 1| | Disk 2 o Keyboard | | Game

Figure 4.38 An exomple of a computer sysiem using different interfoce stondards,

* The 3 major standard 1/0 interfaces are:

1) PCI (Peripheral Component Interconnect)

2) SCSI (Small Computer System Interface)

3 USB (Universal Serial Bus)
PCI defines n expansion bus on the motherboard.
SCSlan USB are used for connecting additional de vices both inside and outside he computer-box.
SCSI bus is a high speed paralle bus intended for devices such as disk and video display.
+ USB uses a serial transmission to suit the n eeds of equipment ranging from keyboard to game
control to internal connection.
* IDE (Integrated Device Electronics) disk is compatible with ISA which shows the connection to an
Ethernet.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

PCI

e PCI is developed as a low cost bus that is truly processor indePendent.

e PCI supports high speed disk, graphics and video devices.

« PCI has plug and play capability for connecting 1/0 devices.

» To connect new devices, the user simply connects the device interfa e board to the bus.

DATA TRANSFER IN PCI
* The data are transfer ed between cache and main-memory.
» The data is a sequence of words which are stored in successive memory-loc a tions.
* Duri read-operation,
When the processor spe cifies an address, the memory responds by sending a sequence
of data-words from successive memory-location .
* During write-operation,
P When the processor sends an address, a sequence of data-words is written into successive
memory-locations.
» PCI supports read an write-operation.
» A read/write-operation involving a single word is treated as a burst of length one.
* PC has 3 address-spaces. They are
1) Memory a ddress-space
2) 1/0 address-space &
3) Configuration address-space.
1/0 Addr ss-space Intended for use with processor.
Configuration space Intended to give P |, its plug and play capability.
» PCI Bridge provides separate physical connection to main-memory.
* The master maintains the address information on the bus until data-transfer is completed.
* At any time, only one device acts as Bu -Master.
* A master is called "initiator" which is either processor or DMA.
* The addressed- d evice that responds to read and write commands is ailed a Target.
* A complete transfer operation on the bus, involving an address and burst of data is called a
transaction.

Host

l

PClbridge | ——

Main

PCI bus |

] | |
Exhernet
nterface

Disk Printer

Figure 439 Use of o PCl bus in o computer sysiem.
Table 7.1 Dala transfer signals on the PCl bus.

Name Function

CLK A 33-MHz or 66-MHz clock

FRAME# Sent by the initiator to indicate the duration of a transmission
AD 32 addeess/data lines, which may be optionally increased to 64
C/BE# 4 command/byte-cnable lines (8 for a 64-bit bus)

IRDY# TRDY# Initiator-ready and Target-ready signals

DEVSEL# A response from the device indicating that it has recognized

its address and is ready for a data transfer transaction

IDSEL# Initialization Device Select

« Individual word transfe s are called "phases’.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

| | | % | 4 | 2|
e i 1 g Y o O g) e S o gy O
]+
I |

=

FRAME®¥

| Gy —
|
C/BEW < Cmnd X Byte enable

IRDY#

TRDY# |

DEVSEL# I

Figure 7.19 A Read operation on the PCl bus.

11T |

During Clock cycle-1,
» The processor a
» asserts FRAME# to indi ate the beginning of a transaction;
— sends the address on AD line a

P The processor removes the address and disconnects its drives from AD lines.

} Selected target
-+ enables i s drivers on AD lines and
fetches the requested-data to be placed on bus.
P Selected target
-+ asserts D VSEL# and
-+ maintains it in asserted state until the end of the transaction.
P c/BE# is
-+ used to send a bu command and it is
-+ used for different purpose during the rest of the transaction.
» During Clock cycle-3
g The initiator asserts IRDY# to indicate that it is ready to receive data.
P it the target has data ready to s nd then it asserts TRDY# In our eg, the target sends 3
more words of data in clock cycle 4 to 6.
* Durin_ Clock cycle-5
The indicator uses FRAME# to indicate the duration of the burst, since it read 4 words, the
initiator negate FRAME# during clock cy le 5.
. During Clock cycle-7,
After sending 4™ word, the target
---, disconnects its drivers and
-+ negates DEVSEL# during clock cycle 7.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

DEVICE CONFIGURATION OF PCI
« The PCI has a configuration ROM that stores information about that device.
» The configuration ROM's of all devices are accessible jn the configuration address-space.

» The initialization software read th se ROM'S whenever the system is powered up or reset.

* In each case, it determines whether the device is a printer, keyboard or disk controller.

» Devices are assigned address during initialization process.

» Each device has an input signal called IDSEL# (Initialization dev ce select) which has 21 address-
lines (AD11to AD31).

. DurinE co figuration operation,

The address is applied to AD input of the device and
The corresponding AD line is setto 1 and all ther lines are set to 0.
AD11 - AD31 pper address-line
Ao - A10 Lower address-line: Spe ify the type of the operation and to access the
content of device configuration ROM.
» The configuration software scans all 21 locations. PCI bus has interrupt-request lines.
* Each device may requests an address int e 1/0 space or memory space

SCSI Bus
» SCSI stands for Small Computer System Interface.
* SC | refers to the standard bus which is defined by ANSI (American National Stan ard Institute).

* SCSI bus the several options. | may be,

Narrow bus It has 8 data-lines & transfers 1 byte at a time.
Wide bus It has 16 data-lines & tra rsfer 2 byte at a time.
Single-Ended Transmission Each signal uses separate wire.

HVD (High Voltage Differential) It was Sv (TTL cells)

LVD (Low y oltage Differential) It uses 3.3v

* Because of these arious options, SCSI connector may have 50, 68 or 80 pin The data transfer rate
ranges from SMB/sto16 M s 2 M /s, 640MB/s. The transfer rate depends on,
1) Length of the cable
2) Number of devices connected.
» To achieve high transfer rate, the bus length should be 1.6m for SE signaling nd 12m for LVD
signali g.
* The SCSI bus us connected t the processor-bus through the SCSI controller. The data are
stored on a disk in blocks called sectors.
Eac sector contains several hundreds of bytes. These data will not be stored in contiguous
memory-location.
» SCSI protocol is designed to retrieve the data in the first sector or any other selected sectors.
» Using SCSI protocol, the burst o data are transferred at high speed.
+ The controller connected to SCSI bus is of 2 types. They are initiator * 2) Target
1) Initiator
P it has the ability to select a part cular target & to send commands specifying the operation to
be performed.
They ar the control! rs on the processor side.

2) Targ_et
The disk controller operates as a target.
It carries out the commands i receive from the initiator.

} The initiator est blishes logical connection with the intended tar et.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

Steps for Read-operation
1) The SCSI controller contends for cont ol of the bus (initiator).
2) When the initiator wins the arbitr o] r

action-process, the initiate r
----, selects the target controller and
----, hands over control of the bustg it.
3) The target starts an output operation. The initiator sends a command specifying the required read-
operation.
4) The target
----, sendes a message to initiator indicating that it will temporarily suspend connection b/w them.
----, then releases the bus.
5 The target controller sends a command to the disk drive to move the read head to the first sector
involved in the requested read-opera ion.
6. The target
----, transfers the contents of the data buffer to the initiator and
----, then suspends the connection again.
7) The target controller sends a command to the disk drive to perform another seek operation.
8) As the initiator controller receives t e data, it stores them into the main-memory using the DMA
approach.
9) The SCSI controller se ds an interrupt to the processor indicating that the data are now available.

BUS SIGNALS OF SCSI

* The bus has o0 address-lines. Instead, it has data-lines to identify the bus-controllers involved in the
selection/reselection/are itration-process.

* For narrow bus, there are 8 possible controllers numbered from Oto 7. For a wide bus, there are 16
controllers.

» Once a connection is e tablished b/w two controllers, there is no further need for addressing & the
data-lines are used to carry the da a.

e ey = e

ﬁh“ 'ﬂnSCSbuanmob

am-y Name Function

Dwa -DBO)w-DB(7) Datalines: Camyooebyte of information during the
informaticn transfer phase and identify device during
arbitration, selection and reselection phases

~DB(P) Parity bit for the data bus

Pase -BSY Busy: Asseried when the bus is not free

~SEL Selection: Asseried during selection and reselection
iofomatoatype ~ -CD CootolDatx: Assersed during transfer of control
information (command, status or message)
-MSG Message: indicates that the information being
transferred is a message
PEESE R _.._“6 _.__._A-,__,____-b;."u.b St
. trasfer cycle
-ACK Acknowiedge: Asserted by the initiator when it bas
completed a dats transfer operation

Direction of taasfer 1O TopatOutper: Asserted 1o indicate as inpet operation
(relasive to the initiator)

Other -AIN Auentics: Assgxted by an initistor whea it wishes 10
send & message 1 & target

-RST Reset: Canses all devices coatrols to discognect from
the bus and assume their start-up stale

< All signal names are proceeded by minus sign.
» This indicates that the signals are active or that the data-line is equal to 1, when the are in the
low voltage state.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

PHASES IN SCSI BUS
» The phases in SCSI bus operation are:
1) Arbitration
2) Selection
3) Information transfer
4) Reselection

) Arbitration
* When the -BSY signal is in inactive state,
the bus will be free &
--,any controlier can request the use of us.
» SCSI uses distributed itration scheme because
each controller may generate requests at the same time.
« Each controller onthe b s is assigned a fixed priority.
*« When -BSY becomes active, all controllers that are requesting the bus
--, examines the data-lines &
--,determine whether highest priority device is requesting bus at the same time.
» The controller using the highest numbered line realizes that it has won the arbitration-process.
At that time, all other controller s disconnect from the bus & wait for -BSY to become inactive again.

Targets examine ID

DB2

DBS

Figure 442 Asbitration ond selection on the SCSI bus. Device 6 wins arbitration

B N

2) Information Transfer
* The i formation transferred between two controllers may consist of
--, commands from the initiator to the ta get
--, status responses f om the target to the initiator or
--, data-transferred to/from the 1/0 device.
» Handshake signaling is used to control information transfers, with the target controller taking the role
of the bus-master.
3) Se ection
* Here, Device
--, wins arbitration and
--, asserts -BSY and -D86 signals.
* The Select Target Controller responds by assert ng -BSY.
« T is informs that the connection that it r quested is established.
4) Reselection
» The connection between the two controllers has been reestablished, with the target in control of the
bus as required for data transf & to proceed.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

ps) &
) High speed (480 mbps).
« The USB has been designed to meet the key objectives. They a e,
1) Provide a simple low-cost and easy to us interconnection system
This overcomes difficulties due to the limited number of 1/0 po ts available on a computer.
2) Accommodate a wide range of data transfer characteristics for 1/0 devices.
For e.g. telephone and Internet connections
3) Enhance user convenience through a "plug-and-play" mode of operation.
* Advantage: USB helps to add many devices to a computer sy tern at any time without opening the
computer-box.
Port Limitation
L Norma | ly, the system has a few limited ports.
To add new ports, the user must open the computer-box to gain access to the internal
expansion bus & install a new interface card.
’ Th user may also need to know to configure the device & the s/w.

Plug & Play
&} The main objective: USB provides a plug & play capabilit .

P The plug & play feature enhances the connection of new device at any tim , while the system

is operation.

| The system should
-+ Detect the existence of the new device automatically.
-+ |dentify the appropriate device driver s/w.
-+ Establish he appropriate addresses.
--+ Establish the logical connection for communication.

DEVICE CHARACTERISTICS OF USB
« The kinds of devices that may be connected to a computer cover a wide range of functionality.
* The speed, volume & timing constrain associated with data transfer to & from devices varies
significantly.
Eg: 1 Keyboard
) Sine the event of pressing a key is not synchronized to any other event in a computer
system, the data generated by keyboard are calle asynchronous.
The data generated from keyboard depends upon the speed of the human operator which is
about 100 bytes/sec.
Eg: 2 Microphone attached in a computer system internally/externally
P The sound picked up by the microphone produces an analog electric signal, which must be
converted into digital form before it can be handled by the computer.
] This is accomplished by sampling the analog signal periodically.
P The sampling process yields a continuous stream of digitized samples that arrive at regular
intervals, synchronized with the sampling clock. Such a stream is called isochronous (i.e.)
successive events are separated by equal period of time.
If the sampling rate in,,S" samples/sec then the maximum frequency captured by sampling
process is s/2.
’ A standard rate for digit | sound is 44.1 KHz.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

USB ARCHITECTURE
e To accommodate a Is%rge nun’{Rer of devic:ﬁ that ¢ n be added or removed at any time, the USB has

wn In the figure
Ehﬁé%ﬁen%tcgg%”ﬁeatsree has a device called a Hub.

< A hub acts as an intermediate control point between the host and the 1/0 devices.

< At the root of the tree, a Root Hub connects the entie tree to the host computer.

« The leaves of the tree are the 1/0 devices being ser ed (for example, keyboard or speaker).

< A hub copies a message that it receives from its upstream connection to all its downstream ports.
« As aresult, a message sent by the host computer is broadcast to all 1/0 devices, but only the
addressed-device will respond to that message.

Host computer

>\h{:h/<

N\
N
@\
/ \
/
AN

o 10 (4]
device device device

Vo
device

/,:
/
/
/ \
\\

{ 2R

{ .

{ N

1w o
device device

Figure 7.17 Univorsal Serial Bus troo structure

USB ADDRESSING
e Fach device may be a hub or an I/O device.
* Each deVice on the USB is assigned a 7-bit address.
* This address
— is |local to the USB tree and
..... > is not related in any way to the address es used on the processor-bus.
* A hub may have any number of devices or other hubs connected to it, and addresses are assigned
arbitrarily.
* When a device is first connected to a hub, or when it is powered-on, it has the address 0.
» The hardware of the hub detects the device t at has been connected, and it records this fact as part
of its own status information.
« periodically, the host polls each hub to
..... > collect status information and
..... > learn about new devices that may have been added or disconnected.
« When the host is informed that a new device has been connected, it uses sequence of commands to
..... > send a reset signal on the correspond ng hub port.
..... > read information from the device about its capabilities.
..... > send configuration information to the device, and
--> assign the device a unique USB address.
« Once this sequence is completed, the device
..... > begins normal operation and
--> responds only to the new address.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
|
USB PROTOCOLS
< All information transferred over the USB is organized in packets.

« A packet consists of one or more bytes of information.
* There a e many types of packets that perform a variety of control functions
« The information transferred on USB is divided into 2 road categories: 1) Control and 2) Data.
« Control packets perform tasks sue as
..... > addressing a device to initiate data transfer.
..... > acknowledging that data have been receive correctly or
--> indicating an error.
» Data-packets carry information that is delivered to a device.
« A packet consists of one or more fields containing different kind of information.
» The first field of any packet is called the Pack t Identifier (PID) which identifies type of that
packet.
* They are transmitted twice.
1) The first time they are sent with their true values and
2) The second time with each bit complement.
« The four PID bits identify o e of 16 different packet types.
« Some control packets, such as ACK (Acknowledge), consist only of the ID byte.
« Control packets used for controlling data transfer operations are called Token Packets.

PID, mll"mz PID; P]B‘,LHB, mzlﬂbil

(a) Packet icentifer fieid
Bits l 8 | 7 | 4 | 5 |
r PID ADDR lmw cxcw]

(b) Token packet, IN or OUT

Biu' 8 | 0t0 8192 | 16 |
lm)] DATA] CRCI6]
(c) Data packet

Figure 445 USB pocket formots.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

Problem 1:
The input status bit in an interface-circuit is cleared as soon as the input data register is read. Why is
this important?
solution:
After reading the input data, it is necessary to clear the input status flag before the program
begins a new read-operation. Otherwise, the same input data would be read a second time.

Problem 2:

What is the difference between a subroutine and an interrupt-service routine?

Solution:
A subroutine is called by a program instruction to perform a function needed by the calling program.
An interrupt-service routine is initiated by an event such as an input operation or a hardware
error. The function it performs may not be at all related to the program being executed at the
time of interruption. Hence, it must not affect any of the data or status information relating to
that program.

Problem 3:
Three devices A, B, & C are connected to the bus of a computer. 1/0 transfers for all 3 devices use interrupt
control. Interrupt nesting for devices A & B is not allowed, but interrupt-requests from C may be
accepted while either A or B is being serviced. Suggest different ways in which this can be accomplished
in each of the following cases:
(a) The computer has one interrupt-request line.
(b) Two interrupt-request lines INTRI & INTR2 are available, with INTRI having hig er priority.
Specify when and how interrupts are e abled and disabled in each case.
Solution:
(a) Interrupts should be enabled, except when C is being serviced. The nesting rules can be
enforced by manipulating the interrupt-enable flags in the interfaces of A and B.
(b) A and B should be connected to INTR, and C to INTR. When an interrupt-request is received
from either A or B, interrupts from the other device will be automatically disabled until the request
has been serviced. However, interrupt-requests from C will always be accepted.

Problem 4:

Consider a computer in which several devices are connected to a common interrupt-request line. Explain

how you would arrange for interrupts from device j to be accepted before the execution of the interrupt

service routine for device i is completed. Comment in particular on the times at which interrupts must

be enabled and disabled at various points in the system.

Solution:
Interrupts are disabled before the interrupt-service routine is entered. Once device i turns off its
interrupt-request, interrupts may be safely enabled in the processor. If the interface-circuit of
device i turns off its interrupt-request when it receives the interrupt acknowledge signal,
interrupts may be enabled at the beginning of the interrupt-service routine of device i. Otherwise,
interrupts may be enabled only after the instruction that causes device i to turn off its interrupt-
request has been executed.

Problem 5:
Consider the daisy chain arrangement. Assume that after a device generates an interrupt-request, it
turns off that request as soon as it receives the interrupt acknowledge signal. Is it still necessary to
disable interrupts in the processor before entering the interrupt service routine? Why?
Solution:

Yes, because other devices may keep the interrupt-request line asserted.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

MODULE 3: MEMORY SYSTEM

BASIC CONCEPTS
e Maximum size of memory that can be used in any computer is determined by addressing mode.

Address Memory Locations
16 Bit P=64K

32 Bit 2’ = 4G (Giga)

40 Bit 27 =1IT (Tera)

Processor-memory interface

Memory
k-bit address

.,/
n-bit data -
A ~J Upto 2" addres
~ d locations
Word length = n bits
< >
— N |
~ Control lines
Processor (RIW, etc.)

Figure 8.1 Connection of the memory to the processor.

If MAR is k-bits long then
..... > memory may contain upto 2K addressable-locations
« If MDR is n-bits long, then
..... > n-bits of data are transferred between the memory and processor.
* The data-transfer takes place over he processor-bus (Figure 8.1).
* The processor-bus has
1) Address-Line
2) Data-line &
3) Control-Line (R/W", MFC - Memory Function Completed).
» The Control-Lin is used for coordinating ata-transfer.
» The processor reads the data from the memory by
..... > loading the address of he required memory-location into MAR and
..... > setting the R/W" | ne to 1.
* The memory responds by
--> placing the data from the addressed-location onto the data-lines and
..... > confirms this action by asserting MFC signal.
» Upon receipt of MFC signal, the processor loads the data from the data-lines into MDR.
» The processor writes the data into the memory -location by
--> loading the address of this location into MAR &
--> setting the R/W" line to O
* Memory Access Time: It is the time that elapses between
..... > itiation of an operation &
..... > completion of that operation.
* Memory Cycl e€Time: Itis the minimum time delay that required between the initiation of the two
successive memory-operations.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

RAM (Random Access Memory)

* 1n RAM, any location can be accessed f - a Read/Write-operation in fixed amount of time,
Cache Memory
~ It is a small, fast memory thatis inserted between
-+ larger slower main-memory and
~+ Processor.
’ It holds the currently active segments of a program and their data.
Virtual Memory
L The address generated by the processor is referred to as a virtual/logical address.

The virtual-address-space is mapped onto the physical-memory where data are actually
stored.

The mapping-function is implement d by MMU. (MMU = memory management unit).
Only the active portion of the address-space is map ed into locations in the physical-memory.

} The remaining virtual-addresses a e mapped onto the bulk storage devices such as magnetic
disk.

As the active portion of the virtual-address-space changes during program execution, the
MMU
-+ changes the mapping-function &
-+ trnsfers the data between disk and memory.
4 During every memory-cycle, MMU determines whether the addressed-page is in the memory.
If the page is in the memory.
Then, the prop r word is accessed and execution proceeds.

Otherwise, a page containing desired word is transferred from disk to memory.
* Memory can be classified as follows:

1) RAM which can be further classified as follows:
i) Static RAM
ii) Dynamic RAM (DRAM) which ¢ n be further classified as synchronou & asynchronous
DRAM.
2) ROM which can be further c lassified as follows:
i) PROM
i) EPROM
i) EEPROM &
iv) Flash Memory which can be further classified a Flash Cards & Flash Drives.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

VTUNOTESBYSRI
SEMI CONDUCTOR RAM MEMORIES

INTERNAL ORGANIZATION OF MEMORY-CHIPS
* Memory-cells are organized in the form of array (Figure 8.2).
» Each cell is capable of storing 1-bit of information.
» Each row of cells forms a memory-word.
* All cells of a row are connected to a common line called as Word-Line.
* The cells in each column are connected to Sense/Write circuit by 2-bit-lines.
» The Sense/Write circuits are connected to data-input or output lines of the chip.
» During a write-operation, the sense/write circuit
----, receive input information &
----, store input info in the cells of the selected word.

b, b4 b, b

w [| |6
0_14 17

b,-v,’
| ’
Wis | ! t |

Ay _'I Addrc

Mem r
decoder
As —=l cell
Sense/Write Sense/Write Sense/Write [~ ROV
circuit circuil circunt le—C
l
D tainput/l Ulpul)in : b b, by

Figure 8.2 Organization of bit cellsin a memory chip.

* The data-input and data-output of each Sense/Write circuit are connected to a single bidirectional
data-line.

» Data-line can be connected to a data-bus of the computer.
* Following 2 control lines are also used:
1) R/W Specifies the required operation.
2) CS' Chip Select input selects a given chip in the multi-chip memory-system.

Requirement of externaJ
Bit Organization connection for address, data
and conh-ol lines

128 (16x8) 14
(1024) 128x8(1k) | 19

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

STATIC RAM (OR MEMORY)
* Memories consist of circuits capable of rétaining their state as long as power is applied are known.
b [

>

s et X Yt —i 2y

Bit ines
Flrra R 4 A drticr DAM rall

Two Inverters are cross connected to form a latch (Figure 8.4).
* The latch is connected to 2-bit-lines by transistors T1 and T2.
* T e transistors act as switches that can be opened/closed under th control of the word-line.
* When the word-line is at ground level the transistors are turned off and the latch retain its state.
Read Operation
» To read the state of the cell, the word-line is activated to close switches T1and T2.
« If the cell is in state 1, the signal on bit-line bis high and the signal on the bit-line b" islow.
* Thus, b and b" are complement of each other.
» Sense/Write circuit
--> monitors the state of b & b" and
--> sets the output accordingly.
Write Operation
* The state of the cell is set by
..... > lacing the appropriate value on bit-line b and its complement on b" and
..... > then activating the word-line. his forces the cell into the corresponding state.
* The required signal on the bit-lines is generated by Sense/Write circuit.

Word line

Bit lines
Figure 8.5 An example of a CMOS memory cell

CMOS Cell

 Transistor pairs (T3, Ts) and (T4, T6) form the inverters in the latch (Figure 8.5).

* In state 1, the voltage at point X is high by hav ng Ts, T6 ON and T4, Ts are OFF.

* Thus, Tland T2 returned ON (Closed), bit-line band b" w Il have high and low signals respectively.

» Advantages:
1) It has low power consumption n,,." the current flows in the cell only when the cell is active.
2) Static RAM"s can be accessed quickly. It aaccess time is few nanoseconds.

- Disadvantage: SRAMs are said to be volatile memories,,” their contents are lost when power is

interrupted.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ASYNCHRONOUS DRAM

e Less expensive RAMs can be implemented if simPle cells are used.

s Such cells cannot retain their state indefinitely. Hence they are cailed Dynamic RAM (DRAM).
» The information stored in a dynamic memory-cell in the form of a charge on a capacitor.

» This charge can be maintained only for tens of milliseconds.

» The contents must be periodically refreshed by restoring this capacitor charge to its full value.

Bit line

Word line

I,.l

—

Figure 8.6 A single-tfransistor dynamic memory cell.

» In order to store information in he cell, the transistor Tis turned ,,ON" (Figure8.6).
» The appropriate voltage is applied to the b t-line which charges the capacitor.
 After the transistor is turned off, the capacito begins to discharge.
* Hence, info. stored in cell can be retrieved correctly bef re threshold value of capacitor drops down.
» During a read-operation,
transistor is turned ,,ON"
..... > a sense amplifier detects whether the charge on the capacitor is above the th eshold value.
; If (charge on capacitor)> (threshold value) Bit-line will have logic value,,!".
If (charge on capacitor) < (threshold value) it-line will set to logic value,,O".

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ASYNCHRONOUS DRAM DESCRIPTION
 The 4 bit cells in each row are divided into 512 groups of 8 (Figure 5.7).
e 21 bit address is needed to access a byte in the memory. 21 bit js divided as follows:
1) 12 address bits are needed to select a row.
i.e. As-0--, specifies row-address of a byte.
2) 9 bits are needed to specify a group of 8 bitsin the selected row.
i.e. A20-9 _, specifies column-address of a byte.

RAS
T e D | ¢ [
An-9/hs-0 = Sense / Write [*— €5
circuits — R/
— S%": e Ff}‘_:';g

B

CAS ————— D, D,
Figure 5.7 Inlernal orgonization of o 2M x 8 dynomic memory chip

» During Read/Write-operation,
--, row-address is applied first.
_, row-address is loaded into row-latch in response to a signal pulse n RAS' input of chip.
(RAS = Row-address Strobe CAS = Column-address Strobe)
* When a Read-operation is initiated, all cells on the selected row are read and refreshed.
« Shortly after the row-address is loaded, he column-address is
--, applied to the address pins &
_, loaded into CAS'.
» The information in the latch is decoded.
» The appropriate group of 8 Sense/Write circuits is selected.
R/W'=l(read-operation) Output values of selected circuits are transferred to data-lines Do-D1.
R/W'=0O(write-operation) Information on Do-D1 are transferred to the selected circuits.
« RAS" & CAS" are active-low so that they cause latching of address when they change from high to
low.
» To ensure that the contents of DR Ms are maintained, each row of cells is accessed periodically.
« A special memory-circuit provide the necessary control signals RAS" & CAS" that govern the timing.
» The processor must take int account the delay in the response of the memory.
Fast Page Mode
} Transferring the bytes in sequential order is achieved by applying the consecutive sequence
of column-address under the control f successive CAS" signals.
This scheme allows transferring a block of data at a faster rate.
The lock of transfer capability is called as fast page mode.

Chaithrashree. A

‘1
COMPUTER ORGANIZATION AND ARCHITECTURE

SYNCHRONOUS DRAM
» The operations are directly synchronized with clock signal (Figure 8.8).
» The address and data connections are buffered by means of registers.
» The output of each sense amplifier is connected to a latch.
» A Read-operation causes the contents of all cells in the selected row to be loaded in these latches.
» Data held in latches that correspond to selected columns are transferred into data-output register.
» Thus, data becoming available on the data-output pins.

Refresh
counter
\/
Row
.| Rw
>4 address A gecoder Cell arra
latch
|
Row/Column
addre —
~ (.:I:J\(ljl::.]:? _~_] Column Read/Writ
o e | decode ircuit lat
3 r hes
A
Clock — \1}
PAS z \
RAS M de regi ter
CAS —» and Data input Data output
R/W Liming oatr | register register
-

Darn
Figure 8.8 Synchronous DRAM.

cok | b4 LIl L L LT L L

R/W _l
|

RAS

]
l
cas _]
I
,ddlress7 I l ||

I I
Data (Do X D1 X D2 X D3)

Figure 8.9 Aburst read 01 ren91hA inan SOR.AM.
* First, the row-address is latched under control of RAS" signal (Figure 8.9).
» The memory typically takes 2 or 3 clock cycles to activate the selected row.
* Then, the column-address is latched under the control of CAS" signal.
» After a delay of one clock cycle, the first set of data bits is placed on the data-lines.
+ SDRAM automatically increments column-address to access next 3 sets of bits in the selected row.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

LATENCY & BANDWIDTH
e A good indication of performance is given by 2 parameters: 1) Latency 2) Bandwidth.

Latency
¢ It refers to the amount of time it take sto transfer a word of data to or from the memory.

» For a transfer of single word, the latency provides the complete indication of memory performance.
» For a block transfer, the latency denotes the time it takes to transfer the first word of data.
Bandwidth
* It is defined as the number of bits or bytes that can be transferred in one second.
» Bandwidth mainly depends on

1) The speed of access to the stored data &

2) The number of bits that can be accessed in parallel.

DOUBLED TA RATE SDRAM (DDR-SDRAM)

* Th standard SDRAM performs all actions on the rising edge of the clock signal.

» The DDR-SDRAM transfer data on both the edges (loading edge, trailing edge).

* The Bandwidth of DDR-SDRAM is doubled for long burs transfer.

* To make it possible to access the data at high rate, the cell array is organized into two banks.
» Each bank can be accessed separately

» Consecutive words of a given block are stored in different banks.

» Such interleaving of words allows simultaneous access to two wo ds.

» The two words are transferred on successive edge of the clock

STRUCTURE OF LARGER MEMORIES
Dynamic Memory System
» The physical i mplementation is done in the form of memory-modules.
 If alarge memory is built by placing DRAM chips directly on the Motherboard,
then it will occupy large amount of space on the board.
* hese packaging consideration have led to the development of larger memory units known as SIMM"s
& DIMM"s.
1) SIMM Single Inling memory-module
2) DIMM Dual Inline memory-module
+ SIMM/DIMM consists of many memory-chips on small boar that pugs into a socket on motherboard

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

MEMORY-SYSTEM CONSIDERATION
MEMORY CONTROLLER
» To reduce the nUmber of pins, the dynamic memory-chips use multiplexed-address inputs.
* The address is divided into 2 parts:
1) High Order Address Bit
Select a row in cell array.
It is provided first and latched into me ory-chips under the control of RAS" si nal.
?2) Low Order Addres Bit
) Selects a column.
) hey are provided on same address pins and latched using CAS" signals.
» The Multiplex ng of address bit is usu lly done by Memory Co troller Circuit (Figure 5.11).

Row/Column
Adges e
— e
2y RAS
RIW —
M CAS
Reguest controller RIW
Processor — Memory
CS
Clock
Clock
2 >
Data

Figure 5.11 Use of o memory controller.

» The Controller accepts a complete addre s & R/W" signal from the processor.
* A Request signal indicates a memory access operation s needed.
* Then, the Controller
----, forwards the row & column portions of the address to the memory.
----, generates RAS" & CAS" signals &
_, sends R/W" & C "signhals to the memory.

RAMBUS MEMORY
* The usage of wide bus is expensive.
* Rambus developed the implementation of narrow bus.
» Rambus technology is a fast signaling m thod used to transfer information b tween chips.
» The signals consist of much smaller vol age swings around a reference voltage Vref.
» The reference voltage is about 2V.
» The two logical values are represented by 0.3V swings above and below Vref.
» This type of sign ling is generally is known as Differential Signalling.
Rambus provides a complete specification for design of communication called as Rambus Channel.
Rambus memory has a clock frequency of 400 MHz.
The data are transmitted on both the edges of clock so that effective data-transfe rate is 800MHz.
Circuitry needed to interface to Rambus channel is included on chip. Such chips are called RDRAM.
(RDRAM = Rambus DRAMS).
* Rambus channel has:
1) 9 Data-lines (1st8™ line ->Transfer the data, 9t line->Paritychecking).
2) Control-Line &
3) Power line.
» A two channel rambus has 18 data-lines which has no separate Address-Lines.
« Communication betwee n processor and R RAM modules i carried ut by means of packets
transmitted on the data-lines.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

* There are 3 types of packets:
1) Request
2) Acknowledge &
3) Data.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

READ ONLY MEMORY (ROM)
e Both SRAM and DRAM chips are volatile, i.e They lose the stored information if power is turned off.
e Many application requires non-volatile memory which retains the stored information if power is
turned off.
* For ex:
OS software has to be loaded from disk to memory i.e. it requires non-volatile memory.
« Non-volatile memory is used in embeded system.
« Since the normal operation involves only reading of stored data, a memory of this type is called ROM.
At Logic value'O' Transist r(T) is connected to the ground point (P).
Transistor switch is closed & voltage on bit-line nearly dr ps to zero (Figure 8 11).
P At Logic value 'l Transistor switch is open.
The bit-line remains at high voltage.

Bit line

Word line

———
T
Connected to store a 0

P i
Not connected to store a |

Figure 8.11 AROM cell

* To read the state of the cell, the word-line is a tivated.
« A Sense ircuit at the end of the bit-line generates the proper output value

TYPES OF ROM
« Different types of non-volatile memory a e
1) PROM
2) EPROM
3) EEPROM &
4) Flash Memory (Flash Cards & Flash Drives)

PROM (PROGR MMABLE ROM)
*» PROM allows the data to be loaded b the use .
* Prog ammabilit is achieved by inserting a ,,fuse" at point P in a ROM cell.
» Before PROM s programmed, the memory contains all 0"s.
» ser can insert I"'s at required location by burning-out fuse using high cu rent-pulse.
» This process is irreversible.
» Advantges:
1) It provides flexibility.
2) It is faster.
3) It is less expensive because they ¢ n be programmed directly by the u er.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

EPROM (ERASABLE REPROGRAMMABLE ROM)
e EPROM allows
— stored data to be erased and
— new data to be loaded.
e In cell, a connection to ground is always made at ,,P" and a special transistor is used.
« The transistor has the ability to function as
a normal transistor or
..... > a disabled transistor that is always turned ,,off".
» Transistor can be programmed to behave as a permanently open switch, by injecting charge into it.
» Erasure requires dissipating he charges trapped in the transistor of memory-cells.
This can be done by exposing the chip to ultra- violet light.
» Advantages:
1) It provides flexibility during the development-phase of digital-system.
2) It is capable of retaining the store information for a long time.
 Disadvantages:
1) The chip must be physically removed from the circuit for reprogramming.
2) The entire contents need to be erase by UV light.

EEPROM ELECTRICALLY ERASABLE ROM)
» Advantages:
1) It can be both programmed a d erased electrically.
2) It allows the erasing of all cell contents selectively.
» Disad antage: It requires different voltage for erasing, writing and read ng the stored data.

FLASH MEMORY
* In EEPROM, it is posible to read & write the contents of a single cell.
* In Flash device, it is possible to read contents of a single cell write entire contents of a block.
* Prior to writing, the previous contents of the block are erased.
Eg. In MP3 player, the flash memory stores the data that represents sound.
 Single flash chips cannot provide sufficient storage capacity for embedded-system.
» Advantages:
1) Flash drives have greate density which leads to higher capacity & low cost per bit.
2) It requires single power supply voltage & co sumes less power.
* There are 2 methods for implementing larger memory: 1) Flash Card & 2) Flash Drives
1) Flash Cards
& One way of constructing large module is to mount flash-chips on a small card.

Such flash-card have standard interf ae.]
The car is simply plugged into a conveniently accessible slot.

Memory-size of the ard can be 8, 32 or 64MB.

} Eg: A minute of music can be stored in 1MB of memory. Hence 64MB flash cards can store an

h ur of music.
2) Flash Drives

Larger flash emory can be developed by replacing the hard disk-drive.
The flash drives are designed to fully emulate the hard dis .

} The flash drives are solid state electronic devices that have no mova le parts.

Advantages:
1) They have shorter seek & access tim which results in faster response.
2) They have low power consumption.. ". they are attractive f r battery driven
application.

3) They are insensitive to vibration.
Di advantages:
1) The capacity of flash drive (<IGB) is less than hard disk (>IGB).
2) It lead to higher cost per bit.
3) Flash memory will weaken after it has been written a number of times (typically at
least 1 million tim s).

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

SPEED, SIZE COST

Characteristics SRAM DRAM Magneris Disk
Speed Very Fast Slower Much slower than
DRAM

Size Large Small Small

Cost Expensive Less Expensive Low pnice
Memory Speed Size Cost
Registers Very high Lower Very Lower
Primary cache High Lower Low
Secondary cache Low Low Low
Main memory Lower than High High

Seconadry cache

Secondary Very low Very High Very High
Memory

» The Cache- memory is of 2 types:
1) Primary/Processor Cache (Lev 11 or L1 cache)

}It is always located on the processor-chip.
2) econ\ga¥y 8ac e (EeveFZ %r ?_92 eacﬁ f)
P it is placed between the primary-cache and t e rest of the memory.
* The memory is implement d using the dynamic components (SIMM, IMM, DIMM).
» The access time for main-memory is about 10 times lon er than the access time for L1cache.

Processor

Registers

Increasink
size

Increasing Increasing
speed cost per bt
Primary L

: HI

Secondary
cache © 12

]

1

Main
memory

B

!
Magnetic disk
secondary
memory

Figure 8.14 Memory hierarchy.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

CACHE MEMORIES
¢ The effectiveness of cache mechanism is based on the property of , Locality of Reference’.

Locality of Reference
« Many instructigns in the localized areas of program are executed repeatedly during some time period

* Remainder of the program is agccessed relatively infrequently (Figure 8.15).
* There are 2 types:

1) Temporal

P The recently exe uted instructions are likely to be executed again very soon.

) Spatial
Inst uctions in close pro imity to re ently executed instruction are also likely to be executed soon.

« If active segm nt of prog am is placed in cache-memory, then total execution time can be reduced.
» Block refers to the set of conti uous address locations of some size.
» The cache-line is used to refer to the cache-block.

Main
memory

Processor |- o4 Cache

Figure 8.15 Use’qf_oc_cxhe_memory .

» The Cac e-memory stores a reasonable number of blocks at a given time.
» This n mber of blocks is small compared to the total number o blocks available in main-memory.
» Correspondence b/w main-memory- lock & cache-memory-block is specified by mapping-function.
» Cache control hardware decid s which block should be removed to create space for the new block.
» The collection of rule for making t is decision is called the Replacement Algorithm.
» The cache control-circuit determines whethe the requested-word currently exists in the cache.
» The write-operation is done in ways: 1) Write-through protocol & 2) Write-back protocol.
Write-Through Protocol
Here the each -location and the main-memory-locations are updated simultaneously.
Write-Back Protocol
} This technique is to
_. u date only the cache-location &
_. mark the cache-location with associated flag bit called Dirty/Modified Bit.
The word in memory will be updated later, when the marked-block is removed from cache.
During Read-operation
« If the requested-wo d currently not exists in the cache, then read-miss will occur.
» To overcome the read miss, Load-through/Eary restart protocol is used.
| oad-Through Protocol
t The block of words that contain the requested-word is copied from the memory into cache.
After entire block is loaded into cache the requested-word is forwarded to processor.
During Write-operation
« If the requeste -word not exists in the cache, then write-miss will occur.
1) If Write Through Protocol is used, the information is ritten directly into main-memory.
2) If Write Back Protocol is used,
_.then lock containing the addressed word is first brought into the cache &
_. then the desired word in he cache is over-written with the new information.

MAPPING-FUNCTION

» Here we discuss about 3 different mapping-function:
1) Direct Mapping
2) Associative Mapping
3) Set-Associative Mapping

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

DIRECT MAPPING

* The block-j of the main-memory maps onto block-j Modulo-128 of the cache (Figure 8.16).
e When the memory-blocks 0, 128, & 256 are Igaded into cache, the block is stored in cache-block 0.
Similarly, memory-blocks 1, 129, 2 57 are stored in cache-block 1.
* The contention may arise when
1) When the cache is full.
2) When more than one memory-block is mapped onto a given cache-block positi n.
* The contention is resolved vy
allowing the new block to overwrite the currently resident-block.
* Memory-address determines pl cement of block in the cache.

Main
memory
T
Block 1
Cache - -

Block 128

)] Block 129
S

lag
Block 127 Block 255

Block 1

\

A\

Block 256

Block 257

Block 4095
Tag Block Word

Ls 1 7

1
| EN | Main memory address

Fiqure 8.16 Direct-mapped cache

» The memory-address is divided into 3 fields:
1) Low Order 4 bit fiel
4 Selects one of 16 words in a block.
2) 7 bit cache-block fiel
7-bits determine the cache-position in whic new block must be stor d.
3) 5 bit Tag field
’ 5-bits memor -address of block is stor d in 5 tag-bits associated with cache-location.
« As execution proceeds,
-bit tag field o memory-address is compared with tag-bits associated with cache-location.
If they match, then the e ired word is in that block of the cache.
Otherwise, the block containing required word must be first read from the memory.
And then the word must be loaded into the cache.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ASSOCIATIVE MAPPING

« The memory-block can be placed into any cache-block position. (Figure 8.17).
e 12 tag-bits will identify a memory-block when it is resolved in the cache.

» Tag-bits of an address received from processor are compared to the tag-bits of each block of cache.
» This comparison is done to see fthe desired block is present.

Main
memory

Cache

A\
\Y
A\

Block i

J/\

Block 127

Block 4095

Tag Word

[12 I 4 l Main memory address

Figure 8.17 Associative-mapped cache.

* It gives complete freedom in choosing the cache-location.

* A new bock that has to be brought into the cache has to replace an existi g block if the cache is full.
* The memory has to determine whet er a given block is in the cache.

» Advantage: It is more flexible than direct mapping technique.

» Disadvantage: Its cost is high.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

SET-ASSOCIATIVE MAPPING
e It is the combination of direct and assOciative mapping. (Figure 8.18).
« The blocks of the cache are grouped into sets.
» The mapping allows a block of the main-memory to reside in any block of the specified sdt.
* The cache has 2 blocks per set, so the memory-blocks 0, 64, 128 4032 maps into cache set ,,0".
» The cache can occupy either of the two plock position within the set.

6 bit set field

2 Determines which set of cache contains the des red block.

6 bit tag field

The tag field of the address is compared to the tags of the wo blocks of the set.

P This comparison is done to check if the desired bloc is present.

Main memory

Block 0
Block |
Cache
oC
ot) < t
a r ' Block 63
b Block |
B Block 64
Setl < Block 2
1ag Black 3 Block 65
OCK 3 R
Block 127
tag Block 128
Set 63 < = Block 126
lag B - Block 129
- lock 127
Block 4095

Tag Set Word
I 6 l 6 l 4]M;nn memory address

Figure 8.18 Set-associative-mapped cache with two blocks per set,

* The cache which contains 1 block per set is called direct mapping.
A cache that has, k" blocks per set is called as "k-way set associat ve cache".
» Each block contains a control-bit called a valid-bit.
The Valid-bit indicates that whether the block contains valid-data.
» The irty bit indicates that whether the block has been mod fied during its cache residency.
Valid-bit=0 When power is initially pplied to system.
Valid-bit=I When the block is loaded from main-memory at first time.
« If the main-mem ry-block is updated by a source & if the block in t he sourc is already exists in the
cache, then the valid-bit will be ¢ eared to "0".
* If Processor & DMA uses the same copies of data then it is called as Cache Coherence Problem.
» Advantages:
1) Contention problem of direct mapping is solved by having few choices for block placement.
2) The hardware cost is decreased by reducing the size of associative search.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

REPLACEMENT ALGORITHM
* In direct mapping method,

the position of each block is pre-determined and there is no need of replacement strategy.
* In associative & set associative method,

The block position is not pre-determined.

If the cache is full and if new blocks are brought into the cache,

then the cache-controller must decide which of the old blocks has to be replaced.

* When a block is to be overwritten, the block with longest time w/o being referenced is over-written.
» This block is called Least recently Used (LRU) block & the technique is called LRU algorith
» The cache-controller tracks the references to all blocks with the help of block-counter.

» Advantage: Performance of LRU is improved by randomness in deciding which block is to be over-
written.

Eg:
Consider 4 blocks/set in set associative cache.
E 2 bit counter can be used for each block.

When a 'hit' occurs, then block counter=0; The counter with values originally lowe than the
referenced one are incremented by 1 & all others remain unchanged.
} When a 'miss' occurs & if the set is full, the blocks with the counter value 3 is removed, the

new block is put in its place & its counter is set to "O" and other block counters are incremented
by 1.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

PERFORMANCE CONSIDERATION
* Two key factors in the commercial success are 1) performance & 2) cost.
» In other words, the best possible performance at low cost.
« A common measure of success is called the Pricel Performance ratio.
» Performance depends on
..... > how fast the machine instructions are brought to the processor &
..... > how fast the machine instructions are ex cuted.
* To achieve parallelism, interleaving is used.
» Parallelism means both the slow and fast units are accessed in the same manner.

INTE LEAVING
* The main-memory of a computer is stru tured as a collection of physically separate modules.
« Each module has its own
1) ABR (addres buffer register) &
2) DBR (data buffer register).
* S0, memory access operations may proc ed in more than one module t the same time (Fig 5.25).
* Thus, he aggregate-rate of transmi sion of words to/from the main-memory can be increased.

@ L Dits ~o @ m Dils ———o e 1 ity e = L DilY
Module Address io module | MM address Address in module Modale | MM address

@ 1 J L——I_“_—v_j

', —_—

Y SO T T T N i

ABR | DBR ABR | DBR ABR | DBR ABR | DBR ABR | DBR ABR | DBR

Module "1 Modale Modulke Module [Module [M?&l:
0 .o i TS n=) 0 wee i .o 2 -1
(a) Consecutive words in a module (b) Consecutive words in consecutive modules

Figure 5.25 Addressing mulliplemodule memory systems.

* The low-order k-bits of the memory address select a module.

While the high-order m-bits name a location within the module.

In this ay, consecutive addresses are located in successive modules.

» Thus, any component of the system can keep several modules busy at any one time T.
* This results in both

..... > faster access to a block of d ta and

..... > higher average utilization of the memory-system as a whole.
» To impleme t the interleaved-structure, there must be 2k modules;

Otherwise, there will be gaps of non-existent locations in the a dress-space.

Hit Rate & Miss Penalty
* The number of hits stated as a fraction of all attempted accesses is called the Hit Rate.
» The extra time needed to bring the desired in ormation into the cache is called the Miss Penalty.
» High hit rates well over 0.9 are ess ntial for high-performance computers.
» Performance is adversely affected by the actions tha need to be taken when a miss occurs.
» A performance penalty is incurred beca se

of the extra time needed to bring a block of data from a slower unit to a faster unit.
» Duri g that period, the processor is stalled waiting for instructions or data.
* We refer to the total access time seen by the proces or when a miss occurs as the miss penalty.
« Let h be the hit rate, M the miss penalt , and C the time to access information in the cache. Thus,
the average access time experienced Yy the processor is

tasg = hC + (1 - h)M

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

VIRTUAL MEMORY
e It refers to a technigue that automatically move pfogram/data blocks into the main-memory when
they are required for execution (Figure 8.24).
» The address generated by the processor is referred to as a virtual/logical address.
» The virtual-address is translated into phys gal-address by MMU (Memory Management Unit).
« During every memory-cycle, MMU determines whether the addressed-word is in the memory.
If the word is in memory.

Then, the word is a cessed and execution proceeds.

Otherwise, a page containing desired word is transferred from disk to memory.
» Using DMA scheme, transfer of data between disk and memory is performed.

Processor
Virtual address
1
Data MMU
Physical address
'
Cache
i
Data Physical address
!
Main memory
)
DMA transfer
1
Disk storage

e 8.24 Virtual memory organization

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

VIRTUAL MEMORY ADDRESS TRANSLATION

» All pregrams and data are comPosed of fixed length units called Pages (Figure 8.25).
The Page consists of a block-of-words. The words occupy contiguous locations in the memory.

The pages are commonly range from 2K to 16K bytes in length.

» Cache Bridge speed-up the gap between main-memory and secondary-storage.

» Each virtual-address contains
1) Virtual Page numb r (Low order bit) and
2) Offset (High order bit).

Virtual Page number + Offset specifies the location of a part cular word within a page.

» Page-table: | contains the information about
..... > memory-address wher the page is stored &
--> current status of the page.
» Page-fra e: An area in the main-memory that holds one page.

» Page-table Base Register: It contains the starting address of the pa e-table.
« Virtual Page Number + Page-table Base register Gives the starting address of the page if that page

currently resides in memory.

» Control-bits in Page-table: The Control-bits is u ed to
1) Specify the status of the page while it is in memory.
2) Indicate the vali ity of the page.

3) Indicate whether the page has been mod fied during its stay in the memory.

Virtual address from processor

Page table base register ' 1 .

Page table address I Virtual page number I Offset I
\J

@-

PAGE TABLE

T AR v
Coatrol Page frame
bits n memory [Page frame | Offset l

ks J

|

Physical address in main memory

Figure 8.25 Virtual-memory address translation.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

TRANSLATION LOOKASIDE BUFFER (TLB)
* The Page-table information is used by MMU for every read/write access (Figure 8.26).
* The Page-table is placed in the memory but a copy of small portion of the page-table is located within
MMU. This small portion is called TLB (Translation LookAside Buffer).
TLB consists of the page-table entries that corresponds to the most recently accessed pages.
TLB also contains the virtual-address of the entry.

Vutual addre from proce r

Irtual page number Ifset
TLB
Virtual controlf Page frame
page bits inmem ry
number
/
/ ——
//
4
1
No
2 i
1 Yes »
\
Miss \
Hit
Page frame ff et 1

Ph i aladdr Sin main mem ry
Figure 8.26 Use of an associative-mapped TIB

* When OS changes contents of page-table, the control-bit will invalidate corresponding entry in TLB.
» Given a virtual-address, the MMU looks in TLB for the referenced-page.
If page-table entry for this page is found in TLB, the physical-address is obtained immediately.
Otherwise, the required entry is obtained from the page-table & TLB is updated.
Page Faults
» Page-fault occurs when a program generates an access request to a page that is not in memory.
« When MMU detects a page-fault, the MMU asks the OS to generate an interrupt.
» The OS
----- , suspends the execution of the task that caused the page-fault and
----- , begins execution of another task whose pages are in memory.
* When the task resumes the interrupted instruction must continue from the point of interruption.
» If a new page is brought from disk when memory is full, disk must replace one of the resident pages.
In this case, LRU algorithm is used to remove the least referenced page from memory.
« A modified page has to be written back to the disk before it is removed from the memory.

Chaithrashree. A

In this case, Write-Through Protocol is used.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]
MEMORY MANAGEMENT REQUIREMENTS
e Management routines are part of the Operating-system.

» Assembling the OS routine into virtual-address-space is called System Sp ace.
* The virtual space in which the user application programs reside is called the User Space.

» Each user space has a separate page-table.
* MMU uses the page-table to determine the address of the table to be used in the translat pn process.
» The process has two stages:
1) User State: In this state, the processor executes the user-program.
2) Supervisor State: In this s ate, the processor executes t e OS routines.
Privileged Instruction
* In user state, the machine ins ructions cannot be executed.
* Hence a user-program is prevented from accessing the page-table of ystem-spaces.
» The control-bits in each entry can be set to co trol the access privileges granted to each program.
i.e. One program may be allowed tor ad/write a given page.
While the other programs may be given only read access.

SECONDARY-STORAGE
* The semi-conductor memories do not provide all the storage capability.
» The secondary-storage devices provide larger storage r quirement .
» Some of the secondary-storage devices are:
1) Magnetic Disk
2) Optical Disk &
3) Magnetic Tapes.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]
MAGNETIC DISK
e Magnetic Disk system consists of one or more disk mounted on a common spindle.
» A thin magnetic film is deposited on each disk (Figure 8.27).
+ Disk is placed in a rotary-drive so that magnetized surfaces move in dose proximity to R/W heads.
» Each R/W head consists of 1) Magnetic Yoke & 2) Magnetizing-Coil.
+ Digital information is stored on magnetic film by applying current pulse to the magnetizing-coil.
» Only changes in the magnetic f eld under the head can be sensed during the Read-operation.
» Therefore, if the binary states 0 & 1 ar represented by two opposite states,
then a voltage is induced in the head only at 0-1 and at 1- transition in the bit stream.
» A consecutive of 0"s & I"s are determined by using the clock.
* Manchester Encoding technique is used to combine the clocking infor ation with data.

Read/Write
A3 J
dr?\t :{i\m v Magnetizing
- current

L ? Magnetic

i |} 1 yoke

Disk \
Access .\LQ.'M“(
mechanism thin film

(a) Mechanical structure (b) Read/Write head detall

=

()m hll

Direction of
magnetization

(c) Bit representation by phase encoding
Figure 8.27 Magnetic disk principles

* R/W heads are maintained at small distance rom disk-surfaces in order to achieve high bit densities.
* When disk is moving at their s t eady state, the air pressure develops b/w disk-surfaces &
head. This air pressure forces the head awa from the surface.
« The flexible spring connection between head and its arm mounting permits the head to fly at the
desired distance away from the surface.
Winchester Technology
» Read/Write heads are placed in a sealed, air-filtered enclosure called the Winchester Technology.
* The read/write heads can ope ate closure to magnetic track surfaces because
the dust particles which are a problem in unsealed ass mblies are absent.
Advantages
It has a larger capacity for a given physical size.
» The data intensity is high because
the storage medium is not exposed to contami ating elements.
» The read/write heads of a disk systern are movable.
» The disk system has 3 parts: 1) Disk Platter (Usually called Disk)
2) Disk-drive (spins the disk & moves Read/write heads)
3) Disk Can troller (controls the operation of the system.)

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ORGANIZATION & ACCESSING OF DATA ON A DISK

e Each surface is divided into concentric Tracks (Figure 8.28).
e Each track is divided jnto Sectors. ' . .
» The set of corresponding tracks on all surfaces of a stack of disk form a Logical Cylinder.

* The data are accessed by specifying the syrface number, track number and the sector number.
* The Read/Write-operation start at s ector boundaries.
« Data bits are stored serially on each track.

Sector 3, track n — Sector 0, track |

T Sector 0, track 0

Figure 8.28 Organization of one surface of a disk.

« Each sector usually contain 512 bytes.
« Sector Header--> contains identification i formation.
It helps to find the desired sect r on the selected track.
« ECC (Error che king code)- is used to detect and correct errors.
« An unformatted disk has no information on its tracks.
* The form tting process divides the disk physically into tracks and sectors
* The formatting process may discover some defective ectors on all tracks.
« Disk Controller keeps a record of various defects.
« Th disk is divided into logical partitions:
1) Primary partition
2) Second ry partition
« Each track has same number of sector . So, all tracks have same storage capacity.
* Th s, the stored informa ion is packed more dens ly on inner track than on outer track.
Access Time
* There are 2 components involv d in the time-delay:
1) Seek time: Time required to move the read/write head to the proper track.
2) atency/Rotational Delay: The amount of time that ela ses after head is positioned over
the correct track until the starting posi ion of the addressed sector passes under the R/W head.
Seek time + Latency = Disk access time
Typical Disk
‘ One inch disk-weight = 1 ounce, size -> comparable to match book
Capacity-> 1GB
’ Inch disk has the following parameter
Recording su face=20
Tracks=15000 tracks/surface
Sectors=400.
Each sector stores 512 byt s of data

Capacity of formatted disk=20x15000x400x512=60x109 =60GB
Seek time=3ms

Platter rotation=10000 rev/min

Latency=3ms

Internet transfer rate=34MB/s

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
———/————————————————————————————
DATA BUFFER/CACHE
e A disk-drive that incorporates the required SCSI circuit is referred as SCSI Drive.
e The SCSI can transfer data at higher rate thanp the disk tracks.
« A data buffer can be used to deal with the possible difference in trapsfer rate b/w disk and SCSI bus
* The buffer is a semiconductor memory.
» The buffer can also provide cache mechanism for the disk.
i.e. when a read request arrives a the disk, then controller first check if he data is available in
the cache/buffer.
If data is available in cache.
Then, the data can be accessed & placed on SCSI bus.
Otherwise, the data will be retrieved from the disk.

DISK CONTROLLER
« The disk controller acts as interface between disk-drive and system-bus (Figure 8.13).
» The disk controller uses DMA scheme to tra sfer data between disk and memory.
* When the OS initiates the transfer by issuing R/W" re uest, the controllers register will load the
following information:
1) Memory A dress: Address of first memory-location of the block of words involved in the
transfer.
2) Disk Address: Location of the s ctor containing the beginning of the desired block of words.
3) Word Count: Number of words in the bock to be transferred.

I Processor
Bridge li Main
MEMmOTY

PCI bus
Disk/DMA DMA
controller controller
Disk Disk Exthemet
inicriace

gure 8.13 Use of DMA controllers in o computer system

* The disk-address issued by the OS is a logical address.
* The correspo ding physical-address on the disk may be different.
* The co troller's major functions are:
1) Seek - Causes disk-dr ve to move the R/W head from its current position to desired track.
2 Read - Initiates a Read-operation, sta ting at address specified in the disk-address register.
Data read serially from the disk ar assembled into words and placed into the data buffer
for transfer to the main-memory.
3) Write - Transfers data to the disk.
4) Error Checking - Computes the error correcting code (ECC) value for the data read from a
given ector and compares it with the corres ending ECC value read from the disk.
In case of a mismatch, it corrects the error if possible;
Otherwise, it raises an interrupt to inform the OS that an error has occurred.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
"]
Problem 1:

Consider the dynamic memory cell. Assume that C = 30 femtofarads (10-1° F) and that leakage current
through the transistor iS about 0.25 picoamperes (10-12 A). The voltage across the capacitor when it is fully

charged is 1.5 V. The cell must be refreshed before this voltage drops below 0.9 V. Estimate the minimum
refresh rate.
__Solution:
The minimum refresh rate is given by
B0 o= 1015 x (4.5 =1

0« 10-12
Therefore, each row has to be refreshed every & ms.

B33 x 1078

Problem 2:
Consider a main-memory built with SDRAM chips. Data are transferred in bursts & the burst length is
8. Assume that 32 bits of data are transferred in parallel. If a 400-MHz clock is used, how much time
does it take to transfer:

(a) 32 bytes fdata

(b) 64 bytes of data
What is the latency in each case?
Solution:

(a) It takes 5 + 8 = 13 clock cycles.

I 13 i
l'otal tims ————— = (LS x I s =505

Latency 102 — 106} 0,038 x 107" s = 38 n=

(b) It takes twic as long to transfer 4 bytes, because two independent 32-byte transfers have
to be ade. The latency is the same, i.e. 8 ns.

Problem 3:

Give a critique of the following statement: "Using a faster processor chip results in a corresponding

increase in performance of a computer even if the main-memory speed remains the same."

Solution:
A faster processor chip will result in increased performance, but the amount of increase will not
be directly proportional to the increase in processor speed, because the cache miss penalty will
remain the same if the main-memory speed is not improved.

Problem 4:
A block-set-associative cache consists of a total of 64 blocks, divided into 4-block sets. The main- memory
contains 4096 blocks, each consisting of 32 words. Assuming a 32-bit byte-addressable address- space,
(a) how many bits are there in main-memory address
(b) how many bits are there in each of the Tag, Set, and Word fields?
Solution:
(@) 40 6 blocks of 128 words each require 12+7 = 19 bits for he main-memory address.
(b) TAG field is 8 bits. SET field is 4 bits. WORD fie d is 7 bits.

Problem 5:
The cache block size in many computers is in the range of 32 to 12 bytes. What would be the main
advantages and disadvantages of making the size of cache blocks larger or smaller?
Solution:
Larger size
t Fewer misses if most of the data in the block are actually used
Wasteful if much of the data are not used before the cache bliss rejected from the

cache)
Smaller size More misses

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

Problem 5:
Consider a computer system in which the available pages in the physical memory are divided among
several application programs. The operating system monitors the page transfer activity and dynamically
adjusts the number of pages allocated to various programs. Suggest a suitable strategy that the
operating system can use to minimize the overall rate of page transfers.
Solution:
The operating system may increase the main-memory pages allocated to a program that has a
large number of page faults, using space previously allocated to a program with a few page faults

Problem 6:
In a computer with a virtual-memory system, the execution of an instruction may be interrupted by a
page fault. What state information has to be saved so that this instruction can be resumed later? Note
that bringing a new page into the main-memory involves a DMA transfer, which requires execution of
other instructions. Is it simpler to abandon the interrupted instruction and completely re-execute it later? Can
this be done?
Solution:
Continuing the execution of an instruction interrupted by a page fault requires saving the entire state
of the processor, which includes saving all registers that may have been affected by the instruction
as well as the control information that indicates how far the execution has progressed. The
alternative of re-executing the instruction from the beginning requires a capability to reverse any
changes that may have been caused by the partial execution of the instruction.

Problem 7:
When a program generates a reference to a page that does not reside in the physical main-memory,
execution of the program is suspended until the requested page is loaded into the main-memory from a
disk. What difficulties might arise when an instruction in one page has an operand in a different page? What
capabilities must the processor have to handle this situation?
Solution:
The problem is that a page fault may occur during intermediate steps in the execution of a single
instruction. The page containing the referenced location must be transferred from the disk into
the main-memory before execution can proceed.
Since the time needed for the page transfer (a disk operation) is very long, as compared to
instruction execution time, a context-switch will usually be made.
(A context-switch consists of preserving the state of the currently executing program, and
"switching" the processor to the execution of another program that is resident in the main-
memory.) The page transfer, via DMA, takes place while this other program executes. When the
page transfer is complete, the original program can be resumed.
Therefore, one of two features are needed in a system where the execution of an individual
instruction may be suspended by a page fault. The first possibility is to save the state of instruction
execution. This involves saving more information (temporary programmer- transparent registers,
etc.) than needed when a program is interrupted between instructions. The second possibility is
to "unwind" the effects of the portion of the instruction completed when the page fault occurred, and
then execute the instruction from the beginning when the program is resumed.

Problem 8:

Magnetic disks are used as the secondary storage for program and data files in most virtual-memory

systems. Which disk parameter(s) should influence the choice of page size?

Solution:
The sector size should influence the choice of page size, because the sector is the smallest directly
addressable block of data on the disk that is read or written as a unit. Therefore, pages should
be some small integral number of sectors in size.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

4
Problem 9:
A disk unit has 24 recording surfaces. It has a total of 14,000 cylinders. There is an average of 400
sectors per track. Each sector contains 512 bytes of data.
(a) What is the maximum number of bytes that can be stored in this unit?
(b) What is the data-transfer rate in bytes per second at a rotational speed of 7200 rpm?
(c) Using a 32-bit word, suggest a suitable scheme for specifying the disk address.
Solution:
(a) The maximum number of bytes that can be stored on this disk is 24 X 14000 X 400 512 =
68.8 X 10° bytes.
(b) The data-transfer rate is (400 X 512 X 7200)/60 = 24.58 X 10° bytes/s.
(c) Need 9 bits to identify a sector, 14 bits for a track, and 5 bits for a surface.
Thus, a possible scheme is to use address bits As-o for sector, A22-9 for track, and A2?-23 or
surface identification. Bits A31-2s are not used.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

MODULE 4: ARITHMETIC

1) Sign and magnitude
2) I's complement
3) 2's complement
« In all three formats, MSB=O f r +ve numbers & MSB=1 for -ve numbers.
* In signh-and-magnitude system,
negative value is obtained by changing the MSB from Oto 1 of the corresponding positive value.
Fore , +5 is represented by .QIOI &
-5 is represented by 1101.
* In I's complement system,

negative values are obtained by complementing each bit of the corresponding positive number.
For ex, -5 s obtained by complementing each bit in 0101 to yield 1010.
(In other words, the operation of forming the I's complement of a given number is equivalent to
subtracting that number from 2n-1).
* In 2's complement system,

forming the 2's complement of a number is done by subtracting that number from 2n.

For ex, -5 is obtained by omplementing each bit in 0101 & then adding 1 to yield 1011.

(In other words, the 2's complement of a number is obtained by adding 1 to the I's complement of
that number).

« 2's complement system yields the most efficient way to carry out addition/subtraction operations.

B Values cepresented

Sign and
bybyb b magnitude 1's complement 2's complement
oL

0rio b
0101 +$
0100 od
0ol +3
0010 2 v2
0oo1 el + | +1

oooo +0

19 W & ta S~

1000 0 7 8
1001 1
1010)

101
1011

3 s da O
-~

0 6 |

1 N
1rol 5
| rd
I 7 0 |

Figure 1.3 Binory, signod-intager rapreseniations

ADDITION OF POSITIVE NUMBERS
Consider adding two 1-bit numbers.

* The sum of 1 & 1 requires the 2-bit vector 10 to represent the value 2. We say that sum is O and the
C rry-outis 1.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ADDITION & SUBTRACTION OF SIGNED NUMBERS
e Following are the two rues for addition and subtraction of n-bit signed numbers using the 2's
complement representation system (F igure 1.6).
Rulg 1:
To Add two numbers, add their n-bits and ignore the carry-out signal from the MSB position.
4 Result will be algebraically correct, if it lies in the range -2n-! to +2n-1-1.
Rule 2:
} To Subtract two numbers X and Y (that is to perf rm X-Y), take the 2's complement of Y and
then add it to X as in rule 1. . i
’ Result will be alg braically correct, if it lies in the range (2n-) to +(2n- -I).
* When the result of an arithmetic operation is out ide the representable-range, an arithmetic overflow
is said to occur.
» To repr sent a signed in 2's complement form using a larger number of bits, repeat the sign bit as
many times as needed to the left. Thi operation is called sign extension.
* InI's complement representation, the result obtained after an addition operation is not always correct.
The carry-out(cn) cann t be ignored. If Ch=0, the result obtained is correct. If Cn=I, then a 1 must be
added to the result to make it correct.

OVERFLOW IN INTEGER ARITHMETIC
* When result of an arithmetic operation is outside the representable-range, an arithmetic overflow
is said to occur.
* For exampl : If we add two numbers +7 and +4, then the output sum Sis 1011(0111+0100),
which is the code for -5, an incorrect result.
An overflow occurs in following 2 cases
1) Overflow can occur only when adding two numbers that have the same sign.
2) The carry-out ignal from the sign-bit position is not a ufficient indicator of overflow when
adding signed numbers.

(a) 0010 (+2) (b 0100 (+4)
« DO11 (+«3) « 1010 (-6)
0101 (+5) 1110 {-2)
ic) 1011 (-S)) o111 (+«7)
+ 1110 (-2} « 1101 (-3)
1001 (-7 o100 1+43)
(e} 1101 (-3 1101
1001 (-7) s+ 0111
100 (+4)
17 0010 {+2) 0010
100 +4 « 1100
1110 (-2)
(g) 0110 (+6) o110
0011 (+3) « 1101

0011 (+3)

h) 1001 (~7) 1001
1011 (-5 +«+ 0101

1110 (-2)

() 1001 () 1001
0001 (+1) « 1111

1000 (-8

() 0010 (42) 0010

1101 (-3 +« 001

0101 (5
Figure 1.6 2s-comploment Add and Subtroct oporations.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ADDITION & SUBTRACTION OF SIGNED NUMBERS

n-BIT RIPPLE CARRY ADDER

* A cascaded connection of n full-adder blocks can be used to add 2-bit numbers.

» Since carries must propagate (or ripple) through cascade, the configuration is called an n-bit ripple
carry adder (Figure 9.1).

X ¥, Carry-in c, Sum s, Carry-outc, ,

0 0 0 0 0
0 0 | | 0
0 1 0 1 0
0 1 | 0 1
| 0 0 1 0
| 0 | 0 1
1 | 0 0 1
| | | | I

;= XV C+TVT +xVT +xyc=x By B¢

4" N B Y.C. + X.C. + X.Y
Example:
\
X 7 0 11 |1} C X .
. arry-out ! Camry-mn
+Y = 46 = +00.:1 100 ‘V-I —=0Y%0 C;
Z 13 1 1| 0 |1 s;

Legend for stage

Fiaure 9.1 loaic spacification for a daae of binary addition

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

& |
)
|
' ‘ ;
: —
\' l‘“|
' ‘—‘ ==
..v
| Rp——
X .\“ y)
Y
T =

Full adder
(FA)

l

F

(a) Logic for a single stage

X1 Yert X ¥y Ly Yo
I - —
1)
Cy i FA s FA FA fo— €,
! ! !
St 5\ 5o
Most significant bit Least significant bat
(MSB) position (LSB) position
(b) An n-bit ripple-carmry adder
ha-1 Tin-1 Y31 Y21 %a Vs Y-t Ya-1 %o Yo
MR MR BE
. r-bit n-bit “n n-bit .
i adder T adder adder T
¢ % o b iy =F
Sin-1 Sih-1n $34-1 S Su-1 Yo
(¢) Cascade of k n-bit adders

Figure 9.2 Llogic for oddifion of binary numbers.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ADDITION/SUBTRACTION LOGIC UNIT

» The n-bit adder can be used to add 2's complement numbers X and Y (Figure 9.3).
¢ Overflow can only occur when the signs of the 2 operands are the same.

* In order to perform the subtraction operation X-Y on 2's comp ement numbers X and Y; we form the
2's complement of Y and add it to X.

« Addition or subtraction operation is done based on value applied to the Add/Sub input control-line
» Control-line=0 for addition, a plying the Y vector unchanged to one of the adder inputs.
Control-line=! for subtraction, the Y vector s 2's complemented.

‘l Y
Add/Sub
= control

F

V

‘ n-bat adder
§ -

ST

s 5 Sh

.1 |
Figure 9.3 Binary oddition/subtraction logic circuit

DESIGN OF FAST ADDERS

» Drawback of ripple carry adder: If the adder is used to implement the addition/subtraction, all
sum bits are available in 2n gate del ys.

e w approaches can be used to reduce delay in adders:

1) Use the fastest possible electronic-technology in implementing the ripp E-carry design.
2) Use an augmented logic-gate network structure.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

CARRY-LOOKAHEAD ADDITIONS
* The logic expression for si(sum) and ci+i1(carry-out) of stage i are
si=xi+yi+c --mme- (1) Ci 1= XiYi+ XICi+ Y Ci oo)
» Factoring (2) into
Ci+1=XiYi+(Xi+Yi)Ci
we can write
Ci+1=G+PiC where G=XiYi and Pi=Xi+Yi
« The expressions G; and Pi are calle generate and propagate functions (Figure 9.4).
* If Gi=l, then Ci+1=l, independent of the inpu carry Ci. This occurs when both Xiand Yiare 1.
Propagate function means that an input carry will produce an output-carry when either Xi=Il ory;=I.
« All Gi and Pi functions can be formed independently and in parallel in one logic-gate delay.
« Expanding Ci terms of i-1 subscripted v riables and substituting into the Ci+1 expression, we obtain
Ci+1=Gi+PiGi-1+PiPi-1Gi- +P1Go+PiPi-1 Poco
» Conclusion: Delay through the adder is 3 gate delays for all carry-bits &
4 gate delays for all sum-bits.
* Consider the design of a 4-b t adder. The carries can be implemented as
C1=Go+Poco
c2=G1+P1Go+P1Poco
C3=G2+P2G1+P2P1Go+P2P1Po o
C4=G3+P3G2+ P3P2G1+ P3P2P1Go+P3P2P1Poco
* The carries are implemented in the block labeled carry-lookahead logic. An adder implemented in this
form is called a Carry-Lookahe d Adder.
< Limitation: If we try to extend the carry-lookahead adder for longer operands, we run into a problem
of gate fan-in constraints.

|
4
B cell
' '
(;’ [‘, 5;
(a) Blt-stage cell
Ty Yy H ¥ 5 on s Yo
[(| [[
B cell — B cell = Beoll fo B cell

f 1 1 f

£y Ly 5

G| |p G| |Py G| |p Gyl | Po

Carry-lookahead Jogx

' '

Gl Pl
(0) 4-bit adder
Figure 9.4 A 4-bit carry-lockahead odder.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

HIGHER-LEVEL GENERATE & PROPAGATE FUNCTIONS
¢ 16-bit adder can be built from four 4-bit adder blocks (Figure 9.5).
e These blocks provide new output functions defined as Gk and P

where k=0 for the first 4-bit block,

k=1 for the second 4-bit block and so on.

« In the first block,

Po=P3P2P1Po

&

G0=G3+P3G2+P3P2G1+P3P2P1Go
» The first-level G; and P; functions determine whether bit stage i enerates or propagates a carry, and
the second level Gk and Pk func ions determine whether block k generates or propagates a carry.
« Carry C16 is formed by one of the carry-lookahead circuits as

C15=G3+P3G2+ P3P2G1+ P3P2P1Go+P3P2P1Poco
» Conclusion: All carries re available 5 gate delays after X, Y and co are applied as inputs.

nsi2 Yisn s Yus 7.4 Y74 Y14 Y10

fde s bt =83

‘l: (g L}

C gy 4-bit adder o 4-bit adder o 4-bat adder un 4-bat adder fo-9 o

' ' ' '

s 115 74 5310

ct| Pt ci| |P cl| |A ch| |

— Carmry-lookahead logic -

(;” I;/l

Figure 9.5 A 16-bit corry-lookaheod odder built from 4-bit odders (see Figure 9.4b)

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
- —Bono@~oBn& v —@ Z — "
MULTIPLICATION OF POSITIVE NUMBERS

R o 2 (13) Muluplicand M

§ O] (1) Muluplicr Q

i 340578

ed 0]
0000

L KO3

1 0001 1 11 (143) Product P

(a) Manual multipication aigorithm

Multiphicand

/ m,/ ml/ m“/

",y

Typcal cell

Canmy-outl -

» '

(b) Array implementation
Figure 9.6 Array multiplication of unsigned binary operands.

ARRAY MULTIPLICATION
» The min component in each cell is a full adder(FA).. oo paREIN O

acell determines whether a multiplicand bit m, s added to the ncoming partial-
product bit, based on the value of he multiplier bit gi (Figure9.6).

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

SEQUENTIAL CIRCUIT BINARY MULTIPLIER
* Registers A and Q combined hold PPi(partial product)
while the multiplier bit gi generates the signal Add/Noadd.
» The carry-out from the adder is stored in flip-flop C (Figure 9.7).
» Procedure for multiplication:
1) Multiplier is loaded into register Q,
Multiplicand is loaded into register M and
C & A are cleared to 0.
2) If go=l, add M to A and store sum in A. Then C, A and Qare shifted right one bit-position.
If go=0, no addition performed and C, A & Qare shifted right one bit-position.

3) After n cycles, the high-order half of the product is held in register A and
(initially 0
hifl right

the low-order half is held in register Q.
Register

(II:O

| —
q, 1;

| . d“
Multiplier Q

C a, |
Add/Noadd------------- —
antral B]

onlf I
sequencer

P g yee—

n-bit
adder <
pr— MUX
\ ; /}
0 ~’ 0
}ﬁ,,] mo
Multiplicand M

(a) Register configuration

} 1i1) ,o,fig,ratio,

M
0
0000
A Q \\
10 0 ~ Add .
0 0 I 0 hifl Fir Icycle
\ 0o 0 Add
0 00 0 Shift econd ycle
(J:) 0 8 (I) 0 Nﬁiﬁdd Third cycle
Add
Shift F urthc cle

00O
0 00O [
Product
/b) Multlolicatron example Figure 9.7 Sequential circuit binorymultiplier.
. ___|]

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]
e ————— s o e e e——

SIGNED OPERAND MULTIPLICATION
BOOTH ALGORITHM
o This algonthm
« generates & 2n-bit product

- treats both positive & negative 2's-compliement n-bit operands uniformiy(Figure 9,9-9,12)
¢ Attractive feature: This algorithm achieves some efficiency in the number of addition required when
the multipleer has a few large blocks of 1s.
o This algonthm suggests that we can reduce the number of operations required for muttiplication by
representing multiplier as a gifference between 2 numbers,

For e.q. multiplier{Q} 14(001110) can be represented as

010000 (16)

-000010 {2)

001110(14)
* Therefore, preduct P=M*Q can be computed by adding 2* umes the M to the 2's complement of 2!
umes the M.

@35 °PFP 30 0.1 9. 050 A el
0 ODeleslelsl 0 Oe¢l O © 0-1 O
O 00 0 6 00 , ©O 00 00D O O
QI 011 o ‘ F0 NS 0t e s complemens of
O rP 01 ¥ 0 I 00 0 0 0 0 0 e Wpicand
A e 'y 1.8 3 0O 00 00 0 O
o o1 I o1 0O 000 O0O0OO
0 ¢ 0 0 0 0 0 8 319230
09 0 0 0 0 O ¢ 0 0 0 0 0
O o0 1y o1 1 OO0 01”1 0O P.G9 A I 8] o983 1S
Figure 9.9 Nomd and Booth muliphconon schemes
o o | 0 | | 0 0 | [] 0 | 0 1 | o o

D el =1 ¢ D <t Oel O 0 <) e} =1 ¢) 0 -8 0 O

Figure 9.10 Booth recoding of o mulipher

1011
1 001
00000

1101 100610 (7%

Figure 9.11 Socth multiplicotion with o regative multiplier

MuBpler | vonion of sukighicand

By Bai-1 s
0] | O=M
0 1 ol xM
|] -IxM
| ! 0xM

Figure 9.12 Book multipher secoding foble

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

FAST MULTIPLICATION
BIT-PAIR RECODING OF MULTIPLIERS
e This method
— derived from the booth algorithm
— reduces the number of summands by a factor of 2
« Group the Booth-recoded multiplie r bits in pairs. (Figure 9.14 & 9.15).
e The pair (+1 -1) is equivalent to the pair (0 +1).

Sign extension~a, T T E}“‘ Implied 0 1o night of LSE

0 -1 2
(a) Example of bit-pair recoding derived from Booth recoding

Multiplice bit-pair Multiplicr bit on the nght Multsplicand
FoNy F 3 sclocied ot posstion ¢

0 0 0 OxM
0 0 | + 1 =M
0 | 0 + 1M
0 | i +2xM

0 0 axM
! 0 ! -1 =M
| I 0 I xM

| | OxM

(D) Tabie of muitplicand sedection decisions
Figure 9.14 Muliplier bit-poir recoding.

01 1 01 (+13%)
1 1 01 0 (-6)

1 1 1 01 1001 0 (.78

011 01
0 u 2
001 10
0011
000

b 30 0540830
Flriwra © 15 Midialisnbing ramsininn anhs al? wenmmands

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

CARRY-SAVE ADDITION OF SUMMANDS

» Consider the array for 4*4 multiplication. (Figure 9.16 & 9.18).
e Instead of letting the carri€s ripple along the rows, they can b ¢saved" and introduced into the next

row, at the correct weighted p gitions.

0 m3qo maxqo myGo Moo
l msqy xl g l mq l Moq)
msq; i mags 1 g, i Mg i
—] FA jJ« — FA je — FA je FA j=—0
maqs myqs mg; o3 0

“J’— FA‘I_ FA‘-—|——_ FA‘

1=

FA FA FA FA fe—0
f / ' | , .

P, Ps P, P, Py

,:
o
M
~
N

(b) Carry-save array
Figure 9.16 carry-save arrays for a 4 x 4 mulfiplier.

| 0 1 | 0 | 45 M 1 0 | 1 0 I M
r 4 K1 3 63 0 «x1 1 1 1 1 1 @Q
[T]o 1 1 o0 1 A
1o 1 1 o 1 A
) ol @ @ 3 B
1 lel v 1 o 2 B
¢ olr] 2 o 3 C
— I 01l 0 1 C
1 0o 1 [1]e 1 D
1 1 [0]J]o 6 0 1 1t ——§
% ¥ 2lel t E l:] !
o o1 1T 4 1 9 D c,
1o 1 1 0|1 F
0 1 1 0 0 0 1 0 0 1 1 ({2835 Product I N R D
Figure 9.17 A multiplication examole used to illustrate _ 1o 1 1 lel b
carry-save oddition as shown in Figure 9.18.
1 0 1 1 0|1 E

e T Level 3 CSA 00 1 1 1 1 0 0

Cyo—n—-

1 1 0 0o 0 o 1 1 —.
F E D C B A
| : | l| | I | ;] Level 1 CSA o 0 1 1 1 1 0 0
C, . C, S; 1 I o0 6 0 0 1 |
| | | | Level 2 CSA 1 1 0o | 0 1t 0 0o 0 1
C; Cs S, 00 0 0 1t 0 1 1 0 0 0

C S 01 0 1 1 1 0 1 0 0 1
_I_l Final addition
0 1 [} 1 0 | o o 0 0o o
Pm:;ucl 10 1 ! 9 B0 1 06 3 | Product
Figure 9.19 Schemafic representation of the carry-save Figure 9.18 The multiplication example from Figure 9.17 performed using
addition operations in Figure 9.18. carry-save oddition.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

» The full adder is input with three partial bit products in the first row.

» Multiplication requires the addition of several summands.

« CSA speeds up the addition process.

» Consider the array for 4x4 multiplication shown in fig 9.16.

« First row consisting of just the AND gates that implement the bit products m3go, m2go, m1go and mogo.
» The delay through the carry-save array is somewhat less than delay through the ripple-carry array.
This is because the Sand C vector outputs from each row are produced in parallel in one full-adde delay.
» Consider the addition of many summands in fig 9.18.

» Group the summands in threes and perform carry-save addition on each of these groups in parallel to
generate a set of S and C vectors in one full-adder delay

» Group all of the S and C vectors into threes, and perform carry-save addition on them, generating
further set of S and C vectors in one more full-adder delay

» Continue with this process until there are only two vectors remaining

* They can be added in a RCA or CLA to produce the desired product.

* When the number of summands is large, the time saved is proportionally much greater

» Delay: AND gate + 2 gate/CSA level + CLA gate delay, Eg., 6 bit number require 15 gate delay,

array 6x6 require 6(n-1)-1 = 29 gate Delay.

* In general, CSA takes 1.7 /og2k-1.7 levels of CSA to reduce k summands

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

INTEGER DIVISION
* An n-bit positive-divisor is loaded into register M.
An n-bit positive-dividend is loaded into register Q at the start of the operation.
Register A is set to O (Figure 9.21).
* After division operation,'tb'c_a_n—bit quotient is j_r_1 'r_e_zgi_sct,e_r_g_, a‘n,d____

T g ——— vy ——

the remainder is in register A,

Shalt lelt

\/ ,.
Qe | g | pinile ; @ fe Gu-1 o o /
A Diwvadend Q /
Jrr— Quotient }]
sciting f
i+ |-bit f Add/Subtract
adder e
Control
\J‘{:——* SOQuencer
0 m. | . M
Divisor M

Figure 9.23 Circui arrangement for binary division,

2 10101

L e e
13274 1101 7100010010
2% 1101
14 10000

13 1ol

| 1o
110}

|
Figure 9.22 longhand division examples.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

NON-RESTORING DIVISION
* Procedure:
Step 1: Do the following n times
i) If the sign of A is 0, shift A and Q left one bit position and subtract M from A
otherwise, shift A and Q left and add M to A (Figure 9.23).
i) Now, If the sign of A is 0, set qo to 1; otherwise set qe to 0.
Step 2: If the sign of Ais 1, add M to A (restore).

Toatzadly 00000 1 000
0001 1)
Shaft 0000 000 l Rt oveke
Subteact 1 1 1 O |
Sct 4,)21 110 00 0|0 [
[
Shaft 11100 000
Add 0001 1 Second cycle
Set g, v 3 S B 0 0 0o
’
Shaft by e gl By - 000]
Add 00011 Thard cycke
Set g, 0000 0 001 ['
’
Shaft 0001 O 0l ol
Subtact 1 1 1 O | } Founth cycle
Sct 4, 1)1 10 1)} 0l ol
a—
Quotient
Add S O I i)
00011 } Restore remainder
00010

v
Remasnder

Figure 9.25 A non-restoring division example

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

RESTORING DIVISION
e Procedure: Do the following n times
1) Shift A and Q left one binary position (Figure 9.22).
2) Subtract M from A, and place the answer back in A
3) If the sign of A is 1, set go to 0 and add M back to A(restore A).
If the sign of Ais 0, set qo to 1 and no restoring done.

Intially O 0 0 0 O 1 000
00011
Shuft 0000 000
Subtract 1 1 1 O) > Fst cycke
Setg, (LJ1 110
Restore I | ,
0Oo0po 0 000 |
Shudt 00010 0 010} |)
Subtract | I 1 O |
Satq, (W21 1) > Second cycle
Restore 1 | i
00010 0 0[00])
Shift Oo0100O 0 [Ol0] |)
Subtract I 1 1 O |}
Setgqy, (0,0 0 0 | > Thard cycle
, .
Shift 00010 0 00})
Subtract | 1 1 O | O[O T}]
St gy YL > Founh cyvcle
Restore I | , :
00010 0010
- v g v
Remainder Quoticn

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

MODULE 5: BASIC PROCESSING UNIT

1) Fetch contents of memory-location pointed to by PC. Conte t of this location is an instruction
to be executed. The instructions are | oaded into IR, Symbolically, this operation is written as:
IR [[PC]]
2) Increment PC by 4.
PC [PC] +4
3) Carry out the actions specified by instruction (in the IR).
» The first 2 steps are referred to as Fetch Phase.
Step 3 is re erred to a Execution Phase.
» The operation specified by an instruction can be carried out by performing one or more of the
following actions:
1) Read the content of a given memory-location and load them into a register.
2) Read data from one or more registers.
3) Perform an arithmetic or logic operation and place the result into a register.
4) Store da a from a register into a given memory-location.
* The hardware-components needed to perform these actions are shown in Fig ure 5.1.

Control
Register circuitry
ISte)
file
IR
Instruction
ALL address
gencrator
PC
Processor-memory interface

Figure 5.1 Main hardware components of a processor

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

SINGLE BUS ORGANIZATION
» ALU and all the registers are interconnected via a Single Common Bus (Figure 7.1).
« Data & address lines of the external memory-bus g connected to the internal processor-bus via MDR
& MAR respectively. (MDR Memory Data Register, MAR Memory Address Register).
 MDR has 2 inputs and 2 outputs. Data may be loaded
----- > into MDR either from meny ry-bus (external) or
..... >from processor-bus (internal).
« MAR"s input is connected to internal-bus;
MAR"s output is connected toexternal-bus.
* Instruction Decoder & Control Unit is responsible for
-> issuing the control-signals to all the units inside the processor.
..... > implement ting the actions specified by the instruction (loaded in the IR).
* Register RO through R(n-1) are the Processor Registers.
The programmer can access these registers for general-purpose use.
« Onl processor can access 3 registers Y, Z & Temp for temporary storage during program-execution.
The programmer cannot access th se 3 registers.
*In ALU, 1) ,,A" input gets the operand from the output of the multiplexer (MUX).
2) ,,B" input gets the operand directly from the process or-bus.
» There are 2 options provided for ,,A" input of the ALU.
« MUX is used to select one of the 2 inputs.
» MUX selects either
-> output of Y or
----- > constant-value 4(which is used to increment PC content).

Figure 7.1 Singlebus ceganizotion of the dotopoth inside © processor.
« An instruction is executed by perfo ming one or more of the following operations:
1) Transfer a word of data from one register to ano her or to the ALU.
2) Perform arithmetic or a logic operation and store the result in r gister.
3) Fetch the contents of a given memory-location and loa them into a register.
4) Store a word of data from a register into a given memor y-location.
- Disadvantage: Only one data-word can be transferred over the bu sin a clock cycle.
Solution: Provide multiple internal-paths. Mui tple paths allow several data-transfers to take place in
parallel.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

' 1
REGISTER TRANSFERS

« Instruction execution involves a sequence of steps in which data are transferred from one register to
another.
« For each register, two control-signals are used: Riin & Riout, These are called Gating Signals.
* Riin=l data on bus is loaded into Ri.
Riout=1 content of Ri is placed onbus.
Riout=0, bus can be used for transferring data from other registers.
* For example, Move R1, R2; This transfers the contents of register Rl to register R2. This can be
accomplished as follows:
1) Enable the output of registers Rl by setting Rlout to 1 (Figure 7.2).
This places the contents of Rl on processor-bus.
2) Enable the input of register R2 by setting R2out to 1.
This loads data from processor-bus into register R4.
« All operations and data transfers within the processor take place within time-periods defined by the
processor-clock.

« The control-signals that govern a particular transfer are asserted at the start of the clock cycle.
Imcmal
ems

Select MUX

Bus

Ry
Clock

U Arl’_“lm,.,

Z

val
figure 7:J. InpJcfitdovipuill1Q fur- nifitard iti ftglll97.3 IepLitend cKJtput gos,g fur osn it"r bil,
Flgw.7.1.

Input & Output Gating for one Register Bit
« A 2-input multiplexer is used to select the data applied to the input of an edge-triggered D flip-flop.
* Riin=l mux selects data on bus. This data will be loaded into flip-flop at rising-edge of clock.
Riin=0O mux feeds back the value currently stored in flip-flop (Figure7.3).
» Q output of flip-flop is connected to bus via a tri-state gate.
Riout=0O gate's output is in the high-impedancestate.
Riout=I the gate drives the busto O or 1, depending on the value of Q.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

PERFORMING AN ARITHMETIC OR LOGIC OPERATION
* The ALU performs arithmetic operations on the 2 operands applied to its A and B inputs
* One of the operands is output of MUX;
And, the other operand is obtained directly from processor-bus.
» The result (produced by the ALU) is stored temporarily in register Z.
* The sequence of operations for [R3]+-[RI]+[R2] is as follows :
1) Rlout, Yin
2) R2out, SelectY, Add, Zin
3) Zout, R3in
« Instructi g1 execution proceeds as follows:
Step 1 --> Contents from register Rl are loaded into register Y.
Step2 --> Contents from Ya nd from register R2 are applied to the A and B inputs of ALU;
Addition is performed &
Result is stored in the Z register.
Step 3 --> The contents of Z register is stored in the R3 register.
« The signals are activated for the duration of the clock cycle corresponding to that step. All other
signals are inactive.

CONTROL-SIGNALS OF MDR
* The MDR register has 4 control-signals (Figure 7.4):
1) MDRin & MDRout control the connection to the internal processor data bus &
2) MDRInE & MDRoutE control the connection to the memory Data bus.
« MAR register has 2 control-signals.
1) MARIn controls the connection to the internal processor address bus &
2) MARout controlsth e connection to the memory address bus,

M:“xmxa:lyn;bus Intemal b::mm“
| MD:E MDiRW |
MDR
{/ MDR,,¢ MDR;, \

Figure 7.4 Connection and control signals for register MDR.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

FETCHING A WORD FROM MEMORY

* To fetch instruction/data from memoly, processor transfers required address to MAR.
At the same time, processor issues Read sigm | on control-lines of memory-bus.

« When requested-data are received from memory, they are stored in MDR. From MDR, they are
transferred to other registers.
 The response time of each memory access varies (based on cache miss, memory-mapped 1/0). To
accommodate this, MFC is used. (MFC M mory Function Completed).
« MFC is a signal sent from addressed-device to the processor. MFC informs the processor that the
req ested operation has been compl ted by addressed-device.
= Consider the instruction Move (RI),R2. The sequence of steps is (Figure 7.5):
1) Rlout, MARIn, Read ;desired address is loaded in o0 MAR & Read command is issued.
2) MDRInE, WMFC ;load MDR from memory-bus & Wait fo MFC response from memory.
3) MDRout, R2;n ;load R2 from MDR.
where WMFC=control-s gnal that causes processor's control.
circuitry to wait for arrival of MFC sig al.

Sip ,———1 i 2 -]' x—o'
W) i 1 /O Y s T Py R

o [i [__
uDR.zE—iJ ‘ ‘;_
e —| ' =y

| g
DR, ll !1] lL

Figure 7.5 Timing of o memory Reod operction.

Storing a Word in Memory
» Consider the instruction Move R2,(R1). This requires the following sequence:

1) Rlout, MAR;n ;desired address is loaded into MAR
2) R2out, MDRin, Write ;data to be written are loaded into MDR & Write command is i sued.
3) MDRoutE, WMFC ;load data into memory-locat on pointed by Rl from MDR.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

EXECUTION OF A COMPLETE INSTRUCTION
e Consider the instruction Add (R3),R1 which adds the contents of a memory-location pointed by R3to
register Rl. Executing this instruction requires the following actions:

1) Fetch the instruction.

2) Fetch the first operand.

3) Perform the addition &

4) Load the result into RI.

Step Action

FCoue, MAR,., Read, Selectd, Add, Z;,
Zouis PCin, Yin, WMFC

MDRus, IR,

Rgur, MAR,y, Read

Rlout, Yin, WMFC

MDR, ., SelectY, Add, Z,,

Zous; Ry, End

=j & & & W bk

Figure 7.6 Coatol sequance for anscuion of the instruction Add [R3)R1

« Instruction executio proceeds as follows:
Stepl > The instruction-fetch op ration is initiated by
-+ | ading contents of PC into AR &
-+ sending a Read request to memory.
The Select signal is set to Select4, which causes the Mux to select constant 4. This value
is added to operand at input B (PC's content), and the result is stored in Z.
Step2--> Updated value in Z is moved to PC. This completes the PC increment operation and
PC will now point to next instruction.
Step3--> Fetched instruction is moved into MDR and then to IR.
The step 1 through 3 constitutes the Fetch Phase.
At the beginning of step 4, the instruction decoder interprets the contents of the IR. This
enables the control circuitry to activate the control-signals for steps 4 through 7.
The step 4 through 7 constitutes the Execution Phase.
Step4--> Contents of R3 are loaded into MAR & a memory read signal is issued.
StepS--> Contents of RI are transferred to Y to prepare for addition.
Step6--> When Read operation is completed, memory-operand is available in MDR, and the
addition is performed.
Step7--> Sum is stored in Z, then transferred to RI.The End signal causes a new instruction
fetch cycle to begin by returning to stepl.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

BRANCHING INSTRUCTIONS
» Control sequence for an unconditional branch instruction is as follows:

Step Action

PCout, MAR,,,, Read, Selectd, Add, Z,,,
Zowt, PCin, Yin, WMFC

MDRous, IR¢q

Offset-field-of-IR e, Add, Zi

Zowt) PCyn, End

Figure 7.7 Control saquence for on unconditional Bronch instruction,

L B L -

as follows:
Step 1-3--> T e processing starts & the fetch phase ends in step3.
Step 4--> The offset-va ue is extracted from IR by instruction-decoding circuit.
Since the updated value of PC is already available in register Y, the offset X is gated onto
the bus, and an addition operation is performed.
Step 5--> the result, which is the branch-address, is loaded into the PC.
« The branch instruction loads the branch target address in PC so that PC will fetch the next instruction
from the branch target addres .
« The branch target address is usually obtained by adding the offset in the contents of PC.
» The offset X is usually the difference betw en the branch target-address and the address
immediately following the branch instruct on.
« In case of conditional branch,
we have to check the status of the condition-codes before loading a new value into the PC.
e.g.: Offse -field-of-IRout, Add, z;n, If N=O then End
If N=0O, processor returns to step 1 immediately after step 4.
If N=I, step 5 is performed to load a new value into PC.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

MULTIPLE BUS ORGANIZATION
* Disadvantage of Single-bus organization: Only one data-word can be transferred over the bus in
a clock cycle. This increases the s eps required to complete the execution of the instruction
Solution: To reduce the number of steps, most processors provide multiple internal-paths. Multiple
paths enable several transfers to take place in parallel.
« As shown in fig 7.8, three buses can be used to connect registers and the ALU of the processor.
< All general-purpose registers are gro ped into a single block called the Register File.
» Register-file has 3 ports:
1) Two output- orts allow the contents of 2 different registers to be simultaneously placed on
buses A & .
2) Third input-port allows d ta on bus C to be loaded into a third register during the same
clock-cycle.
» Buses A and Bare used to transf r source-operands to A & B inputs of ALU.
* The result is transferred to destination over bus C.
e Inc ementer Unit is used to increment PC by 4.

Step Action
1 PC:, R=B, MAHR,., Read, IncPC
2 WMFC

3 MDBoy, R=B, IR,
i Rlowa, Rboun, Selecth, Add, RS, End
an]&"l Contral soquence for the imirucion Add R4,15 RS

« Instruction execution proc eds as follows:
Step 1--> Contents of PC are
> passed thro gh ALU using R=B control-signal &
, loaded into M R to start memory Read operation. At the same time, PC is incremented by 4.
Step2--> Processor waits for MFC signal from memory.
Step3--> Processor loads requested-data into MDR, and then transfers them to IR.
Step4--> The instruction is decoded and add operation takes place in a single step.

BusA BusB BusC

P

Regisier
file

Coastant 4

Memmory bus Address
data lizes lmes

Figere 78 Thisebus organizotion of the datopoth

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

COMPLETE PROCESSOR
» This has separate processing-units to deal with integer data and floating-point data.
Integer Unit > To process integer data. (Figure 7.14).
Floating Unit To process floating -point data.
« Data-Cache is inserted between thes @rocessing-units & main-memory.
The integer and floati g unit gets data from data cache.
« nstruction-Unit fetches instructions
--> from an instruction-cache or
..... > from main-memory when desired instructions are not alre dy in cache.
« Processor is connected to system-bus &
hence to the rest of the computer by means of a Bus Interface.
= Using separate caches for ins ructions & data is common practice in many processors today.
= A processor may include several unit of each type to increase the potential for concurrent
operations.
« The 80486 processor has -kbytes single cache for both instruction and data.
Whereas the Pentium processor has two separate 8 kbyt s caches for instruction and data.

IC il ¥

Instruction Integer Flosting-point
umt umit unit
F4) 1

Instraction Data
cache cache

Bus interface Processor
< —_—

U U Sysem bus
Main Impat/

memory Output

Figure 7.14 Block diogrom of o complete processor.

Note:
To execute instructions, the processor must have some means of generating the control-signals. There
are two approaches for this purpose:
1) Hardwired control and 2) Microprogrammed control.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

HARDWIRED CONTROL
e Hardwired control is a method of control unit design (Figure 7.11).
« The control-signals are generated by using logic circuits such as gates, flip-flops, decoders etc.
« Decoder/Encoder Block is a combinational-circuit that generates required control-outputs
depending on state of all its inputs.
I » nstruction Decoder
P It decodes the instruction loaded in the IR.
P If IRis an 8 bit register, then instruction decoder generate 28(256 lines); one for ach
instruction.
P it consists of a separate utput-lines INS1 through INSm for each machine instruction.
> According to code in the IR, one of the outp t-lines INS1through INSm is set to 1, and all
other lines are set to 0.
» Step-Decoder provi es a separate signal line for each step in the control sequence.
» Encoder
¢ It gets the input from instruction ecoder, step decoder, external inputs and condition codes.
t It uses all these input to genera e individual control-signals: Y;n, PCout, Add, End and so on.
For example (Figure 7.12), Z;n=T1 T6.ADD+T4.BR
;This signal is asserted during time-slot T1 for all instructions.
during T6 for a Add instruction.
during T4 for unconditional branch instruction
« When RUN=I, counter is incremented by 1 at the end of every clock cycle.
When RUN=O, counter stops counting.
- After execution of ea h instruction, end signal is generated. End signal resets step counter.

» Sequence of operations carried o t by this machine is determined by wiring of logic circuits, hence
the name "hardwired".

« Advan age: Can operate at high speed.

» Disadvantages:
1) Since no. of instructions/control-lines is often in hundreds, the comp exity of control unit is
very high.
2) | is costly and diffi ult to design.
3) The control unit is inflexible because it is difficult to change the design.

CLX

Clock Control step | Resct
counter
Step decoder
T, T; T A&l
|
38 External 3
INS, aputs
IR . Encoder
. decoder
v " Condition :
» codes
INS, o
1] 7 s
O
Control signals

X Z,
Figere 7.11 Separofion of the decoding and encoding funcions. Figore 7.12 Geserction of the Z,, contol signol

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

HARDWIRED CONTROL VS MICROPROGRAMMED CONTROL

Attribute Hardwir & Control Microprogrammed Contro |
Definition Hardwired cé&trol is a control| Micro programmed control is a control
mechanism to generate control-| mechanism to generate control-signals
signals by using gates, flip- flops, | by using a memory called control store
decoders, and oth er (CS), which contains the control-
digital circuits. signals.
Speed Fast Slow
Control functions Implemented in hardware. Implemented in software.
Flexibility Not flexible to accom gigfew | More flexible, to accommodate new

system s ecifigations or new
instructions.

syg em specification or new instructions
redesign is required.

Ability to handle large
orcomplex instruction
sets

Difficult.

Easier.

Ability
operating systems
diagnostic fagtures

to

support

&

Very difficult.

Easy.

Design process

Complicated.

Orderly and tematic.

Applications

Mostly RISC microprocessors.

Mainframes, some microprgc €Ssors.

Instructionset size

Usually under 100 inst, ctions.

Usually over 100 instructions.

ROM size

2K to 10K b 20 -400 bit

microinstructions.

Chip area efficiency

Uses least area.

Uses more area.

Diagram

Status
information

Control signals

tHtttt

State register
t

Control storage
address register

Status
information

Control signals |

ittt [

[Microinstruction register| | ¥ |

Control storage

ei

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ei

MICROPROGRAMMED CONTROL
e Microprogramming is a method of control unit design (Figure 7.16).
» Control-signals are generated by a program similar to machin e language programs.
« Control Word(CWJ is a word whose individual bits represent various control-signals (like Add, PCn).
» Each of the control-steps in control sequence of an instruction defines a unique combination of Is &
Os in CW.
« Individual control-w rds in microroutine are referred to as microinstructions (Figure 7.15).
« A sequence of CWs corresponding o control-sequence of a machine instruction constitutes the
microroutine.
< The microroutines or all instructions in the instruction-set of a computer are stored in a special
memory called the Control Store (S).
< Control-unit generates control-signals for any instruction by sequentially reading CWs of
corresponding microroutine from CS.
 PCis used to read CWs sequentially from CS. (WPC Microprogram Counter).
< Every time new instruction is loaded into IR, o/p of St rting Address Generator is loaded into uPC.
* Th n, uPC is automatically inc emented by clock;

causing successive microinstructions to be read from CS.

Hence, control-signals re delivered to various parts of processor in correct sequence.

pencrator

i

Clock pPC

§

Control
woe > W

Figure 7.16 Basic orgonizofion of o microprogrommed control uni.

1 { | | 1
u 5|12 Ed E 3 [ol
Micro 4 !53 € E ’ | '3111‘;!1:
mm.!-gg,i;?s?-‘lg §1J1‘ | & EinB'!rg"
! o titinjololofrfririofo ojo]oio
2 |oo'ooox.‘o olof1lo 0‘.0‘1!0
3 | joloiololiit/olojolojolololelolo
Figure 7.15 An exomple of microinstruchions for Figure 7.6,

Advantages

« It simplifies the design of control unit. Thus it is both, cheaper and less error prone implement.

< Control functions are impleme ted in software rather than hardware.

» The design process is orderly and systematic.

» More flex ble, can be changed to accommodate new system specifications or to corr ct the design
errors quickly and cheaply.

« Com lex function such as floating point arithmetic can be realized efficiently.

Disadvantages

» A microprogrammed control uni is somewh t slower than the hardwired control unit, because time is
required to access the microin gructions from CM.

« The flexibility is achieved at some extra hardware cost due to the control memory and its access
circuitry.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

ORGANIZATION OF MICROPROGRAMMED CONTROL UNIT TO SUPPORT CONDITIONAL
BRANCHING
e Drawback of previous Microprogram control:
~ It cannot handle the situation when the control unit is required to check the status gthe
condition codes or external inputs to cho e between alternative courses of action.
Solutjon:
Use conditional branch microinstruction.
= In case of conditional branching, microinstructions specify which of the external nputs, condition-
codes should be checked as condition for branching to take place.
« Starting and Branch Address Generator Block loads a new address into pPC when a
microinstruction instructs it to do so (Figure 7.18 .
» To allow implementation of a conditional branch, inputs to this block consist of
--> external inputs and condition-codes &
..... > contents fIR.
« UPCis incremented every time a new microinstruction is fetched from microprogram memory except
in following situations:
1) When new instruction is loaded into IR, uPC is loaded with starting-address of microroutine
for that instruction.
2) When a Bran h microinstruction is encountered and branch condition is satisfied, uPC is
loaded with branch-address.
3) When an E d microinstruction is encountered, pPC is loaded with address of first CW in
microroutine for instruction fetch cycle.

Address Microinstruction

PCout, MAR;,,, Read, Selectd, Add, Z,,

Zowty PCiay Yia, WMFC

MDRoy:, IRin

Branch to starting address of appropriate microroutine
If N=0, then branch to microinstruction 0
Offset-field-of-IR ¢, SelectY, Add, Z;,

Zout, PCin, End

Figure 7.17 Microroutine for the insiruction Bronch < 0.

N B Rl » - ©

External
<: ial;:‘a
Starting and -
= e S
-
Clock pupPC
el o> 3+

Figure 7.18 Orgonizotion of the control unit to ollow condifional branching in the microprogrom

ei

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

MICROINSTRUCTIONS
e A simple way to structure microinstructionsis to assign one bit position to each control-signal

required in the CPU.
» There are 42 signals and hence each microinstruction will have 42 bits.

» Drawbacks of microprogrammed control:
1) Assigning indjvidual bits to each control-signal results in long microinstructions b cause
the number of required signals is usu lly large.
2) Available bit-space is poorly used because
only a few bits are set to 1 in any given microinstruction.
 Solution: Signals can be gr uped because
1) Most signals are not needed simultaneously.
2) Many signals are mutually exclusive. .g. only 1 function of ALU can be activated at time.
For ex: Gating signals: IN and OUT signals Figure 7.19).
Control-signals: Read, Write.
ALU signals: Add, Sub, Mui, Div, Mod.
» Grouping control-signals into fields requires a little more hardware because
decoding-circuits must be used to decode bit patter s of each field into individual control-signals.
» Advantage: This method results in a smaller control-store (only 20 bits are needed to store the
patterns for the 42 signals).

Preaew g

Microtastruction

F! R F R FS
F1 (4 bizs) F2 (3 bits) F3 (3 bits) 4 (4 bits) FS (2 bits)
0000: No transfer 000: No tramsfer 000: No transfer 0000: Add 00: No action
0001: PC,., 001: PC,, 001: MAR,, 0001: Sub 01: Read
0010: MDR,, O10:IR,, 010: MDR,, . 10: Write
0011: 2, on:z, 011: TEMP,, .
0100: RO, 100: RO, 100:Y,, 1111: XOR
0101: R1,,, 101:R1,, oy o e
ole:R2,,, 110: R2,, Lol
0111:R3 MRS,
1010: TEMP .,
1011: Offset .,

Fe Fl F8 .-

F6 (1 bir) F7() bit) F8 (1 b)

0: SelectY 0 No xction 0 Contunue
1; Selecid 1: WMIC 1: End

Figure 7.19 An example of a partil lormat for fieldencoded microinstructions,

ei
Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

TECHNIQUES OF GROUPING OF CONTROL-SIGNALS

* The grouping of contfol-signal can be done either by using
1} Vertical organization &
2) Horizontal organization.

Vertical Orgagjzation Horizontal Organization

Highly encoded schemes that use compact codes | The minimally encoded scheme in which many
to specify only a small number of control | resources can be controlled with a single

functions in each microinstruction are re fged micro instruction is called a horizontal

to as a vertical organization. organization.

Slower operating-speeds. Useful when higher operating-speed is desired.
Short formats. Long formats.

Limited ability to express parallel | Ability to express a high degree of parall sm.

microoperations.

Considerable encoding of the control| Little encoding of the control information.
information.

MICROPROGRAM SEQUEN NG
« The task of microprogram sequencing is done by microprogram sequencer.
 Two important fact rs u t e considered while designing the microprogram sequencer:
1) The size of the microinstruction &
2) T e address generation time.
* The size of the microinstruction should be minimum so that th size of control memory required to
st re microinstructions is also | ss.
» This reduces the cost of control memory.
+ With less address generation time, microinstruction can be executed in less time resulting better
throughout.
« During executi n of a microprogram the address of the next microinstruction to be executed has 3
sources:
1) Determined by instru tion register.
2) Next sequential address &
3) Branch.
» Microinstructions can be shared using microins ruction branching.

» Disadvantage of m croprogrammed branching:

1 Having a s eparate microroutine for each machine instruction results in a large t tal

number of microinstructions and a large cont ol-store.

2) Execution time is longer because it takes more time to carry out the required branches.
» Consider the instruction Add src,Rdst ;w ich adds the source-operand to the contents of Rdst and
places the sum in Rdst.
» Let sour e-operand can be specified in following addressing modes (Figure 7.20):

a) Indexed

b) Autoincrement

c) Autodecremen

d) Register indirect &

e) Register direct
« Each box in the chart corresponds to a m croinstru tion that control the transfers and perations
indicated w thin the box.
« Th microinstruction is located at the address indicated by the octal number (001,002).

ei

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

000
MAR - [PC]: Read: Z & [PC] + 4 Start

001
PC, Y o [Z]: WMFC

L

IR +- [MDR]

003
Branch| InstDec, OR|

P WEKCTOMONUTIRCS for oRher instIUCtions

Indexed Autodecremest Aufoencremest Regiser indizect
161 141 12t ($1
MAR o [FC]; Read L4+ |Rsrc) -4 MAR ¢ [Rarc), Read MAR « [Rurc), Read
Z+PC)+4 2 Rexc]+4
18 142 2 12
PC & |2), WMFC MAR Refe + [Z]: Read Reee ¢ [Z) Brameh{ 171}, WMFC
163 ks
Vo= NDR) Beanch{ 170, OR}; WMFC
164 143
Ze[Y]+ [Rarc) Braach(170, OR}, WMFC
ol
MAR ¢ {Z); Read
166

Branch| 170, OR }: WMEC

170
MAR «— [MDREL Read, WMFC

171

Ll g Regisier dires 101
- Branch(172} Y ¢ [Ruxc)
172
Z Y]+ |Ris)
173
s
I Figure 7.20 Flowchort cf o microprogram for the Add src,Rds! instruction.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

BRANCH ADDRESS MODIFICATION USING BIT-ORING
» The branch address is determined by ORing particular bit or bits with the current address of
microinstruction.
» Eg: If the curren taddress is 170 and branch addressis 171 then the branch address can be
generated by ORing Ol(bit 1), with the curre 4 address.
« Consider the point labeled ¢ in the figure. At this point, it is necessary to choose between direct and
indirect addressing modes.
« findirect-mode is specified in the instruction, then the microinstruction in location 170 is performed
to fetch the operand fro the memory.
If direct-mode is specified, this fetch must be bypassed by branching immediately to location 171.

» The most efficient way to bypass microinstruction 170 is to have bit-ORing of

----, current address 170 &

----, branch address 171.

WIDE BRAN H ADDRESSING

« The instruction-decoder (InstDec) generates the starting-address of the microroutine that implements
the instruction that ha just been loaded into the IR.

* Here, register IR contains the Add instruction, for which the instruction decoder generates the
microinstruction address 101. (owever, this address cannot be loaded as is into the uPC).

» The source-operand can be specified in any of several addressing-modes. The bit-ORing technique can
be used to modify the startin -address generated by the instruction-decoder to reach the appropriate path.
Use of WMFC

* WMFC signal is issued at location 112 which causes a branch to the microinstruction in location 171.

« WMFC signal means that the mi roinstruction may take several clock cycles to complete. If the branch
is allowed to happen in the firs clock cycle, the microinstruction at location 171 would be fetched and
executed prematurely. To avoid this problem, WMFC signal must inhibit any change in the contents of
the pPC during the waiting-period.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

Detailed Examination of Add (Rsrc)+,Rdst
e Consider Add (Rsrc)+Rdst; which adds Rsrc content to Rdst content, then stores the sumin Rdst
and finally increments Rsrc by 4 (i.e auto-increment mode).
« In bit 10 and 9, bit-patterns 11, 10, 01 and 00 denote indexed, auto-decrement, auto-increment and
register modes respectively. Fpreach of these modes, bit 8 is used to specify the indirect version.
« The processor has 16 registers that can be used for addressing purposes; each specified using a 4-
bit-code (Figure 7.21).
* There re 2 stages of decoding:
1) The microinstruction field must be decoded to determine that an Rsrc or Rdst register is
involve .
2) The decoded output is then us d to gate the contents of the Rsrc or Rdst fields in the IR into
a second decoder, which produces the gati g-signals for the actual registers RO to R15.

Mode
Contents of IR OP code 010 Rsre Rist
o 1110 87 43 0
Address Microinstruction
(octal)
000 PC,.» MAR,,, Read, Selects, Add, Z,,
001 Zeur PCops Yo WMFC
002 MDR,,, IR,
003 uBranch {UPC ¢ 101 (from Instraction decoder);
WPCy 4 = (IRyq); KPC; ¢~ [IRg) - [TRg] - [TRg])
121 Rsre,., MAR,,, Read, Selectd, Add, Z,,
122 Z o R80T,
123 WBranch {UPC & 170; uPCy ¢ [IRg]), WMFC
170 MDR__, MAR,, Read, WMFC
171 MDR... Y.,
172 Rdst,., SelectY, Add, Z,,
173 Zoe Rdst,, End

Figure 7.21 Microinsiruction for Add [Rrc)+ Rds.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

MICROINSTRUCTIONS WITH NEXT-ADDRESS FIELDS

External Condition
Inpuss codes

.
Decoding circuits ..—|

UAR
Vi

Control stoce

i

I Next address HIR
Microinstruction decoder

Control signals
Figure 7.22 Microinstruction-sequencing organization.

e Drawback of prevP us organization:
» The microprogram requires several branch microinstructions which perform no useful
aper gtion. Thus, they detract from the aper ging-speed of the computer.
Solution:
} Include an address-field as a part of every microinstruction to indicate the location of the next
microinstruction to be fetched. (Thus, every microinstruction becomes a branch
microinstruction).
« The flexibility of this approach comes at the expense of additional bits for the address-field(Fig 7.22).
* Advantage: Separate pranch microinstructions are virtually eliminated. (Figure 7.23-24).
- Disadvantage: Additional bits fo (the address field (around 1/6).
« There is no need for a counter to keep track of sequential addregs. Hence, uPC is replaced with pAR.
* The next-address bits are fed t yough the OR gate to the PAR, so that the address can be modified
on the basis of the data in the IR, exte mal inputs and condition-codes.
* The decoding circuits generate the starting-address of a given micro routine on the basis of the
opcode in the IR. (MLAR Microinst ruction Address Register).

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

Microinstruction
Fo Fi F2 F3
FO (8 bits) F1 (3 bits) F2 (3 bits) E3 (3 bits)
Address of next 000; No transfer 000; No transfer 000: No transfer
microinstruction 001: PC, 001: PC,, 001: MAR
010: MDR,,, 010: IR, 010: MDR,,
011:Z,,, 011:Z;, 011: TEMP;,
100: Rsre,,, 100: Rsrcy, 100:Y,,
101: Rdst, 101: Rdst;,
110: TEMP
F4 F5 Fb F7
F4 (4 bits) F5 (2 bits) Fo ([bit) F7 (1 bit)
0000; Add 0 No action i SelectY i No action
(001: Sub 01 Read 1- Selectd 1. WMFC
: 10, Wnte
1111: XOR
F& i) Flio
FE {1 hit) F91{1 bit) FI10(1 bat)
0: NextAdrs 0 No action) No action
Iz TnsiDec 1: O, e 1 ORre

Figure 7.23 Format for microinsinuctions in the example of Secfion 7.5.3,

] | }
Octal o
address m rirRIRB M

™ ' ! ' Y !
00000001]001j011[001{0000

00000010(011}601/100{0000
onooooxxonJonoooomooo
oooooooooo%pooooo%ooo

- — e e e

12!‘0!010010:
]22 OIIIIOOO

000
001
002

100011y 001 10000
011} 1009000 0000,00 0

F

r - __._._,._.‘,4_.,‘1

1701 01111001,010000 001!0000;
l7l:0l|ll0!0
172201111011
173100000000

Ol
010/000{100/ 0000'00 0 i
lOl‘OllIDOO ‘000000100
0|IlOI0000000000 0'

Figure 7.24 Implementation of the microroutine of Figure 7.21 using a
next-microinstruction address field. (See Figure 7.23 for encoded signals.)

Chaithrashree. A

COMPUTER ORGANTZATTON AND ARCHITECTURE
L

PREFETCHING MICROINSTRUCTIONS
- Disadvantage of Microprogrammed Control: Slower operating-speed because of the time it takes
to fetch microinstructions from the control-store.
Solution: Faster operation is achieved if the next microinstruction is pre-fetched while the
current one is being executed.
Emulation
« The main function of microprogrammed control is to provide a means for simple, flexible and
relatively inexpensive execution of machine instruction.
« Its flexibility in using a machine's resources allows diverse classes of instructions to be implemented.
« Suppose we add to the instruction-repository of a given computer MI, an entirely new set of
instructions that is in fact the instruction-set of a different computer M2.
« Programs written in the machine language of M2 can be then be run on computer Ml i.e. Ml
emulates M2.
« Emulation allows us to replace obsolete equipment with more up-to-date machines
« If the replacement computer fully emulates the original one, then no software changes have to be
made to run existing programs.
« Emulation is easiest when the machines involved have similar architect

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

Problem 1:
Why is the Wait-for-memory-function-completed step needed for reading from or writing to the main
memory?

Solution:
Th e WMFC step is needed to synchronize the operation of the processor and the main memory.

Problem 2:
For the single bus organization, write the complete control sequence for the instruction: Move (RI), RI
Solution:

1) PCout, MARIn, Read, Select4, Add, Zin

2) Zout, PCin, Yin, WMFC

3) MDRout, IRin

4) Rlout, MARIn, Read

5) MDRinE, WMFC

6) MDRout, 2in, End

Problem 3:

Write the sequence of control st ps required for the sing e bus organizat on in each of the follow ng
instruction :
a) Add the immediate number NUM to register RI.
b) Add the contents of memory-location NUM to register RI.
c) Add the contents of the me ory-location whose address is at memory-locati n NUM to
register RI.
Assume that each instruction consis s of two words. The first word specifies the operation andN the
addressing mode, and the second word contains the number NUM
Solution:

(a) 1. PC,u. MAR,,,. Read, Selectd, Add. Z,,,
Zout. PCin. Yin. WMFC

MDR . IR(s

PCut. MAR,,,, Read, Selectd, Add, Z,.,
Zout. PCin. Yin

Rl Yin. WMFC

MDR,¢. SelectY, Add. Z,,,

Zout. Rl End

8
(5) 1-4. Same as m (a)
5. Zowt. PCin, WMFC
6. MDR,..;. MAR,,,, Read
7. Rl s, Yin, WMFC
8. MDR,,;. Add Z,,,
9. Zout. Rliq, End
(¢) 1-5. Same as m (&)
6. MDR..:. MAR,,,. Read, WMFC
7-10. Same as 6-9 m (b)

- O W

Problem 4:
Show the control steps for the Branch on Negative instruction for a processor with three-bus

organization of the data path
Solution:

Pcur. R=B, MAR-... Read, IncPC
WMFC

MDR s, R=B, IRy,
PC,,,. Offset field of IR ;. Add. If N = | then PC,,,. End

ds £ B

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

MODULE 5(CONT.): EMBEDDED SYSTEMS & LARGE
COMPUTER SYSTEMS

W
stem.
= This appliance is based on magnetron power-unit that generates the m crowaves used to heat food.
« When turned-on, the magnetron enerates its maximum power-output.
Lower power-levels can be obtained by turning the magnetron on off for controlled time-intervals.

« Cooking Options include:

_, Manual selection of the power-level and cooking-time.

_, Manual selection of the sequence of different ¢ oking-steps.

_, Automatic melting of food by specifying the weight.
» Display {or Monitor} can show following information:

_, Time-of-day clock.

_, Decrementing clock-timer while cooking.

_, Informati n-messages to the user.
« /O Capabilities include:

_, Input-keys that comprise a Oto 9 number pad.

_, Function-keys such as Start, Stop, Reset, Power-level et

_, Visual output in the form of a LCD.

_, Small speaker that produces the beep-tone.
< Computational Tasks executed are:

_, Maintaining the time-of-day clock.

_, Determining the actions needed for the various cooking options.

_, Generating the control-signals needed to turn on/off devices.

_, Generating display information.

MICROCONTROLLER

= = =1
l l

Figure 10.1 A block diagrom of a microwave oven

* Non-volatile ROM is used to store the program required to implement the desired actions.
So, the program will not be lost when the powe r is turned off (Figure 10.1).
* Most important requirement: The microcontroller must have sufficient 1/0 capability.
Parallel /0O Ports are used for dealing with the external 1/0 signals.
Basic I/0 Interfaces are used to connect to the rest of the system.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

DIGITAL CAMERA
¢ Digital Camera is one of the examples of embedded System.

 An array of Optical Sensors is used to capture images (Figure 10.2).
» The optical sensors convert light into electrical charge.

Ovtical
Lm Wt al
ECRSOMS

- Mletor

swiiches

lroage LCTY
LTS reEh

Cable 1o PC

Figure 10.2 A smplified block diogram of o digild comera
- Each sensing-element generates a charge that corresponds to one pix |.
One pixel is one point of a pictorial image.
The number of pix Is determines the quality of pictures that can be recorded & displayed.

ADC is used to convert the charge which is an analog quantity into a digital representation.
- Processor

> manages the operation of he camera.

> processes the raw image-data obtained from the ADCs to generate images.
» The images are represented in standard-formats, so that they are suitable for use in computers.
* Two standard-formats are:

1) T FFis used for uncompressed images &

2) JPEG is used for compressed images.
* The processed-image s are stored in a larger storage -device. For ex: Flash memory cards.
A captured & processed image can be displayed on a LCD screen of camera.
* The number of saved-images depends on the size of the store e-unit.
Typically, USB Cable is used for transferring the images from camera to the computer.
» System Controller generates the signals nee ed to control the operation of

i) Focusing mechanism and

i) Flash unit.
(ADC Anal g-to-digital converter, LCD liquid-crystal display)
(TIFFTagged Imag File Format, JPEGJoint Ph tographic Expert Group)

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

HOME TELEMETRY (DISPLAY TELEPHONE)
* Home Telemetry is one of the examples of embedded system.
» The display-telephone has an embedded processor which enables a remote access to other devices in
the home.
+ Display telephone can perform following functions:
1) Communicate with a computer-controlled home security-system.
2) Set a desired temperature to be maintained by an air conditioner.
3) Set start-time, cooking-time & temperature for food in the microwave-oven.
4) Read the electricity, gas, and water meters.
+ All of this is easily implementable if each of these devices is controlled by a microcontroller.
* A link (wired or wireless) has to be provided between
1) Device microcontroller &
2) Microprocessor in the telephone.
» Using signaling from a remote location to observe/control state of device is referred to as telemetry.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

MICROCONTROLLER CHIPS FOR EMBEDDED APPLICATIONS

MICROCONTROLLER CHIPS FOR EMBEDDED APPLICATIONS

Paralic! o
GE—
To extermal o ~ Processor VO porta
MCMONY ~ m core
Senal 57 ~
10 ponts N v’
Intcrnal
MOy
Counter/Tuner < >
————— \!'\4'[‘.\(.’\)“] l‘.\\"“'lk‘l-?lﬂ p—t—ln

Figure 10.3 A block diagram of o microcontrolier

* Well-known popular microprocess r architecture must be chosen. This is because, design of new
products is facilitated by

----, numerous CAD tools

----, good examples &

----, large amount of knowledge/experience.
* Memory-Unit must be included on the microcontroller-chip.
* The memory-size must be sufficient to satisfy the memory-requirements found in small applications.
+ Some memory should be of RAM type to hold the data that change during computations.

Some memory should be of Read-Only type to hold the software.

This is because an embedded system usually does not include a magnetic disk.

« A field-programmable type of ROM storage must be provided to allow cost-effective use.

For example: EEPROM and Flash memory.
* 1/0 orts are provided for both parallel and serial interfaces.
» Parallel and Serial Interfaces allow easy implementation of stand rd 1/0 connections.
« Timer Circuit can be used

---,to generate con roll-signals at programmable time intervals &

----, for event-counting purposes.
* An embed ed system may include some analog devices.
ADC & DAC are used to convert analog signals into digital representations, a d vice versa.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

PARALLEL 1/0 INTERFACE
z ——'S PortA
Processor Parallel UO
Data <, —L —_—__—= PortB
control S — 1 .
‘ ‘ Receivedall
serial UO .
Transmit data
Internal
memory ——+—— countering

Counterfeiter
——— LIDer oul

Figure 10.4 An example microcontroller.

« Each parallel port has an associated 8-bit DDR (Data Direction Register) (Figure 10.4).
 DDRcan be used to configure individual data lines as either input or output.

Read Part ----------------- ‘
e < P
utpuL data
o o>
Wrilc_Port -+ iig
D I—
Writc_DIR 11~ Q

Datadirection
Figure 10.5 Access to one bit in port A in Fi ure 10.4.

 If the data direction flip-flop contains a 0, then Port pin PAi is treated as an input (Figure 10.5).

If the data direction flip-flop contains a 1, then Port pin PA; is treated as an output.
« Activation of control-signal Read_Port, places the logic value on the port-pin onto the data line D;.

Activation of control-signal Write_Port, places value loaded into output data flip-flop onto port-pin.

* Addressable Registers are (Figure 10.6):

1) Input registers (PAIN for port A, PBIN for port B)

2) Output registers (PAOUT for port A, PBOUT for port B)

3) Direction registers (PADIR for port A, PBDIR for port B)

4) Status-register (PSTAT) &

5) Control register (PCONT).

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
__|]

Addrcss

FITFFFA I PAIN I Port A sopat
L I PAOUT] Port A output
FHFFFR l PADIR I Poes A disectson
FIVFHEES l PRIN] Port B swpant
FIVFHFFR [PROUT] Port B outpae
FRFHES I PRIIR I Port B diroctron
) T TR e R T
FRFFFFFG [3 : l Status register (PSTAT)
IROUT —] [— PASIN
IBIN — PASOUT
TAOUT e e PRSIN
IAIN PESOUT
FRYT [| | |] Coatrod reguster (PCONT)
ENROUT -—] [—— ENAIN l— PAREG
ENBIN ENAOUT PHREG

Figure 10.6 Porallel inforfoce registers

The re are new data on port A (Figure 10.6).

PASIN =0 When the processor accepts the data by reading the PAIN register.
* The in interface uses a separate control line to indicate availability of new data to the connected device.
« PASOUT =1 Whenthe data in register PAOUT are accepted by the connected-device.

PASOUT = 0 When the processor writes data into P OUT.
* Link PASIN & PAOUT, the flags PBSIN and PBSOUT perform the same function on port B.
* The status register also contains four interrupt flags. They are IAIN, IAOUT, IBIN & IBOUT.
« IAIN =1 When interrupt is enabled a d the corresponding 1/0 action occurs.
» The interrupt-enable bits are held in control register PCON
« ENAIN=1 when the corresponding interrupt is enabled.
* For ex If ENAIN=I & PASIN=l, then interrupt flag IAIN is set to 1 and an in erupt request is raised.

Thus,

IAIN = ENAIN * PASIN
» Control Registers is used for controlling data transfers to/from the devices connected to ports A/B.
* Port A has two control lines: AIN and CAOUT.
* CAIN and CAOUT are be used to provide an automatic signaling mechanism b/w

i) Interface and

ii) Attached device.
* PAREG and PBREG are used to select the mode of operation of inputs to ports A and B respective! y
* If PAREG =1,

Then, a register is use do store the input data.

Otherwise, a direct path from the pins is used.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
C]

SERIAL 1/0 INTERFACE
* The serial interface provides the UART capability to transfer data (Figure 10.7).
(UART Universal Asynchronous Receiver/Transmitter).

* Double buffering is
---. used in both the transmit- and receive-paths.

---. needed to handle bursts in 1/0 transfers correctly.

Receive shaft register Sena! mpul

Receive buffer

D7

Transmit buffer

Transmit s hift register Serial output

Figure 10.7 Receive and transmit structure of the serial Interlace

* Addressable Registers are (Figure 10.8):
1) Receive-buffer
2) Transmit-buffer
3) Status-register (SSTAT)
4) Control register (SCONT) &
5) Clock-divisor register (DIV).

Addre
FFFF 'O RBUF Receive buffer"
FFFF B Transmit buffer
7 ‘ r "5 4 3 0
titusre r SSI:
FFFFRIE_ _I] | |
4
1: Error mtcm:Jpt l— | : Recc:ivedull
| : Transmitter interrupl be——— | : Trnnsmitterc:mpty
1 Rcoei,-er interrupt | detected
FFFFFFE3 | ‘ ‘ ‘ | Control register (SCONT)
| : Enable error interrupt —I L 0 : Use system clock
| : Enable transmitter interrupt I : Davide clock
| : Enable receiver interrupt
31 0
FFFF DIV (Divisor register)

Figure 10.8 Serial interfrxe regi ers

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
]

* Input data are read from the Receive-buffer.
Output data are loaded into the Transmit-buffer.
« Status Register (SSTAT) provides information about the current status of

i) Receive-units and

i) Transmit-units.

Bit SSTATO =1 When there are new data in the receive-buffer.
Bit SSTATO = 0 When the processor accepts the data by reading the receive-buffer.
« SSTATI =1 When the data in transmit-buffer are accepted by the connected-device.
SSTATI = 0 When the processor writes data into transmit-buffer.
(SSTATO & SSTATI similar to SIN & SOUT)
« SSTAT2 =1 if an error occurs during the receive process.
The status-register also contains the interrupt flags.
SSTAT4 =1 When the receive-buffer becomes full and the receiver-interrupt is enabled.

SSTATS =1 When the transmit-buffer becomes empty & the transmitter-interrupt is enabled.
» Control Register (SCONT) is used to hold the interrupt-enable bits.

* If SCONT6-4 = 1.

Then the corresponding interrupts are enabled.

Otherwise, the corresponding interrupts are disabled.
» Control register also indicates how the transmit clock is generated
« If SCONTO = 0.

Then, the transmit clock is the same as the system (processor) clock.

Otherwise, a lower frequency transmit clock is obtained using clock-dividing circuit.
Clock-divisor register (DIV) divides system-clock signal to generate the s rial transmission clock.
The counter generates a clock signal whose frequency is equal to

= Frequency of system clock
Contents of DIV register

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

COUNTER/TIMER
* A 32-bit down-counter-circuit is provided for uSe as either a counter or a timer.
« Basic operation of the circuit involves
----, loading a starting value into the counter and
----, then decrementing the counter-contents using either
i) Internal system clock or
if) External clock signal.
» The circuit can be programmed to raise an interrupt when the counter-content search O.

Address 3l 0

DO l ONTM Unsiad valec)]

FFFFDY I COUNT (Counter contents) I

FFFFRFDS [J Control register (CTCON)
l |

0 : Coumtcr _] L 1: Saan

1 : Timer

b | 2 S0P

| : Enshic mtermuge

FFERREDY l |] Status regaster (CTSTAT)

I : Counter reached zero

Figure 10,9 Countor/Timer ragidors

+ Counter/Timer Register (CNTM) can be loa ed with an initial value (Figure 10.9).
» The initial value is then transferred into the counter-circuit.
* The current contents of the counter can be read by accessing mem ry-address FFFFFFD4.
» Control Register (CTCON) is used to specify the operating mode of the counter/timer circuit.
* The control register provides a mechanism for
----, starting & stopping the counting-process &
----, enabling interrupts when the counter contents are decremented to O.
» Status Register (CTSTAT) reflects the state of the circuit.
* There are 2 modes: 1) Counter mode 2) Timer mode.
Counter Mode
+ CTCO 7=0 When the counter mode is selected.
» The starting value s loaded into the counter by writing it into register CNTM.
* T e counting process begins when bit CTCONO is se to 1 by a program.
» Once counting starts, bit CTCONO is automatically cleared to
» The counter is decremented by pulses on the Counter.
» Upon reach ng 0, the counter-circuit
----, sets the status flag CTSTATO to 1 &
----, rases an interrupt if the corresponding interruption let bit has been set to 1.
» The next clock pulse causes the counter to reload the starting value.
» The starting value is held in register CNTM, and counting co tenues.
» The counting-process is stopped by setting bit CTCONI to 1.
Mode
* CTCON7 =1 When the timer mode is selected.
» This mode can be used to generate periodic interrupts.
« It is also suitable for generating a squat re-wave signal.
» The process stats as explained above for the counter mode.
» As the counter counts down, the value on the output line is held consta t.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
|
» Upon reaching 0, the counter is reloaded automatically w th the starting value, and the
» output signal on the line is inverted.
» Thus, the period of the output signal is twice the starting counter value multiplied by

the period of the controlling clock pulse.
 In the timer mode, the counter is decremented by the system clock.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE

MODULE 5(CONT.): THE STRUCTURE OF GENERAL-
PURPOSE MULTIPROCESSORS

uniform Memory Access) Multiprocessor

* An interconnection-network permits n processors to access k memories (Figure 12.).

Thus, any of the processors can access any of he memories.
* The interconnection-network may introduce network-delay between

1) Processor &

2) Memory.
» A system which has the same network k-latency for all accesses from the processors to the
memory-modules is called a UMA Multi p rocessor
» Although the latency is uniform, it may be large for a network that connects

-+ many processors &

-+ many memory-modules.
* For better performance, it is desirable to place a memory-module close to each processor.
* Disadvantage:

Interconnection-n works with very short delays are costly and complex to implement.

TLLRIVEE B IYTWIIWG IVIME VWY WIIWIE ULy WY wwoy

Processons

l |

| |

Memone

Figure 12.2 A UMA mulfiprocessor

2. NUMA (Non-Uniform Memory Access) Multi processors
* Memory-modules are attached directly to the processors (Figure 12.3).
* T e network-latency is avoided when a processor makes a r quest to access its local memory.
» However, a request to access a remote- memory-module must pass through the network.
» Because of the difference in latencies for a processing local and remote portions of the
shared memory, systems of this type are called UMA multiprocessors.
» Advantage:
A high computation rate is achieved in all processors
- Disadvantage:
The remote accesses take considerably longer than access s to the local memory.

Chaithrashree. A

COMPUTER ORGANIZATION AND ARCHITECTURE
|
3. Distributed Memory Systems

« All memory-modules serve as private memories for processors that are directly connected to
them.

» A processor cannot access a remote memory without the cooperation of the remote-
processor.

» This cooperation takes place in the form of messages exchanged by the processors.

» Such systems are often called Distributed-Memory Systems (Figure 12.4).

M M. M

- -
e

—

Figure 12.4 A distributed memory system

Chaithrashree. A

