DATA STRUCTURES AND APPLICATIONS			
Course Code:	$\mathbf{2 1 C S 3 2}$	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	$3: 0: 2: 0$	SEE Marks	50
Total Hours of Pedagogy	$40 \mathrm{~T}+20 \mathrm{P}$	Total Marks	100
Credits	04	Exam Hours	03
Course Objectives:			

CLO 1. Explain the fundamentals of data structures and their applications essential for implementing solutions to problems.
CLO 2. Illustrate representation of data structures: Stack, Queues, Linked Lists, Trees and Graphs.
CLO 3. Design and Develop Solutions to problems using Arrays, Structures, Stack, Queues, Linked Lists.
CLO 4. Explore usage of Trees and Graph for application development.
CLO 5. Apply the Hashing techniques in mapping key value pairs.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
2. Use of Video/Animation to explain functioning of various concepts.
3. Encourage collaborative (Group Learning) Learning in the class.
4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
6. Introduce Topics in manifold representations.
7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
8. Discuss how every concept can be applied to the real world - and when that's possible, it helps improve the students' understanding.

Module-1

Introduction: Data Structures, Classifications (Primitive \& Non-Primitive), Data structure operations (Traversing, inserting, deleting, searching, and sorting). Review of Arrays. Structures: Array of structures Self-Referential Structures.
Dynamic Memory Allocation Functions. Representation of Linear Arrays in Memory, dynamically allocated arrays and Multidimensional Arrays.
Demonstration of representation of Polynomials and Sparse Matrices with arrays.
Textbook 1: Chapter 1: 1.2, Chapter 2: 2.2-2.7, Text Textbook 2: Chapter 1: 1.1-1.4, Chapter 3: 3.1-3.3, 3.5, 3.7, Chapter 4: 4.1-4.9, 4.14 Textbook 3: Chapter 1: 1.3

Laboratory Component:

1. Design, Develop and Implement a menu driven Program in C for the following Array Operations
a. Creating an Array of N Integer Elements
b. Display of Array Elements with Suitable Headings
c. Exit.

Support the program with functions for each of the above operations.
2. Design, Develop and Implement a menu driven Program in C for the following Array operations
a. Inserting an Element (ELEM) at a given valid Position (POS)
b. Deleting an Element at a given valid Position POS)

c. d. Support the program with functions for each of the above operations.	
Teaching-Learning Process	Problem based learning (Implementation of different programs to illustrate application of arrays and structures. https://www.youtube.com/watch?v=3Xo6P V-qns\&t=201s

a. Create a DLL stack of N Professor's Data. b. Create a DLL queue of N Professor's Data Display the status of DLL and count the number of nodes in it.	
Teaching-Learning Process	MOOC, Active Learning, Problem solving based on linked lists. https://nptel.ac.in/courses/106/102/106102064/ https://ds1-iiith.vlabs.ac.in/exp/linked-list/basics/overview.html https://ds1-iiith.vlabs.ac.in/List\%20of\%20experiments.html https://ds1-iiith.vlabs.ac.in/exp/linked-list/basics/overview.html https://ds1-iiith.vlabs.ac.in/List\%20of\%20experiments.html
	Module-4
Trees 1: Terminologies, Binary Trees, Properties of Binary trees, Array and linked Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder; Threaded binary trees, Binary Search Trees - Definition, Insertion, Deletion, Traversal, and Searching operation on Binary search tree. Application of Trees-Evaluation of Expression. Textbook 1: Chapter 5: 5.1-5.5, 5.7; Textbook 2: Chapter 7: 7.1-7.9	
Laboratory Component: 1. Given an array of elements, construct a complete binary tree from this array in level order fashion. That is, elements from left in the array will be filled in the tree level wise starting from level 0. Ex: Input : $\operatorname{arr}[]=\{1,2,3,4,5,6\}$ Output: Root of the following tree $\begin{gathered} 1 \\ / \backslash \\ 23 \\ / \backslash / \backslash \\ 4 \quad 56 \end{gathered}$ 2. Design, Develop and Implement a menu driven Program in C for the following operations on Binary Search Tree (BST) of Integers a. Create a BST of N Integers b. Traverse the BST in Inorder, Preorder and Post Order	
Teaching-Learning Process	Problem based learning http://www.nptelvideos.in/2012/11/data-structures-and- algorithms.html https://ds1-iiith.vlabs.ac.in/exp/tree-traversal/index.html https://ds1-iiith.vlabs.ac.in/exp/tree-traversal/depth-first-traversal/dft-practice.html
Module-5	
Trees 2: AVL tree, Red-black tree, Splay tree, B-tree.	
Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Traversal methods: Breadth First Search and Depth FirstSearch.	
Hashing: Hash Table organizations, Hashing Functions, Static and Dynamic Hashing.	
Textbook 1: Chapter 10:10.2, 10.3, 10.4, Textbook 2:7.10-7.12, 7.15 Chapter 11: 11.2, Textbook 1: Chapter 6 : 6.1-6.2, Chapter 8 : 8.1-8.3, Textbook 2: 8.1-8.3, 8.5, 8.7	
Textbook 3: Chapter 15:15.1, 15.2,15.3, 15.4,15.5 and 15.7	

Laboratory Component:

1. Design, Develop and implement a program in C for the following operations on Graph (G) of cities
a. Create a Graph of N cities using Adjacency Matrix.
b. Print all the nodes reachable from a given starting node in a diagraph using DFS/BFS method.
2. Design and develop a program in C that uses Hash Function $H: K->L$ as $H(K)=K$ mod $m(r e m i n d e r ~$ method) and implement hashing technique to map a given key K to the address space L . Resolve the collision (if any) using linear probing.

| Teaching-Learning Process | NPTL, MOOC etc. courses on trees and graphs. |
| :--- | :--- | http://www.nptelvideos.in/2012/11/data-structures-andalgorithms.html

Course Outcomes (Course Skill Set)

At the end of the course the student will be able to:
CO 1. Identify different data structures and their applications.
CO 2. Apply stack and queues in solving problems.
CO 3. Demonstrate applications of linked list.
CO 4. Explore the applications of trees and graphs to model and solve the real-world problem.
CO 5. Make use of Hashing techniques and resolve collisions during mapping of key value pairs
Assessment Details (both CIE and SEE)
The weightage of Continuous Internal Evaluation (CIE) is 50\% and for Semester End Exam (SEE) is 50\%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of $\mathbf{2 0}$ Marks (duration 01 hour)

1. First test at the end of $5^{\text {th }}$ week of the semester
2. Second test at the end of the $10^{\text {th }}$ week of the semester
3. Third test at the end of the $15^{\text {th }}$ week of the semester

Two assignments each of $\mathbf{1 0}$ Marks
4. First assignment at the end of $4^{\text {th }}$ week of the semester
5. Second assignment at the end of $9^{\text {th }}$ week of the semester

Practical Sessions need to be assessed by appropriate rubrics and viva-voce method. This will contribute to 20 marks.

- Rubrics for each Experiment taken average for all Lab components - 15 Marks.
- Viva-Voce- 5 Marks (more emphasized on demonstration topics)

The sum of three tests, two assignments, and practical sessions will be out of 100 marks and will be scaled down to 50 marks
(to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).
CIE methods /question paper has to be designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)

1. The question paper will have ten questions. Each question is set for 20 marks. Marks scored shall be proportionally reduced to 50 Marks
2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.

The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Textbooks:

1. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C, 2nd Ed, Universities Press, 2014.
2. Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Ed, McGraw Hill, 2014.
3. Reema Thareja, Data Structures using C, 3rd Ed, Oxford press, 2012.

Reference Books:

1. Gilberg and Forouzan, Data Structures: A Pseudo-code approach with C, 2nd Ed, Cengage Learning, 2014.
2. Jean-Paul Tremblay \& Paul G. Sorenson, An Introduction to Data Structures with Applications,2nd Ed, McGraw Hill, 2013
3. A M Tenenbaum, Data Structures using C, PHI, 1989
4. Robert Kruse, Data Structures and Program Design in C, 2nd Ed, PHI, 1996.

Weblinks and Video Lectures (e-Resources):

1. http://elearning.vtu.ac.in/econtent/courses/video/CSE/06CS35.html
2. https://nptel.ac.in/courses/106/105/106105171/
3. http://www.nptelvideos.in/2012/11/data-structures-and-algorithms.html

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Real world problem solving using group discussion.
- Back/Forward stacks on browsers.
- Undo/Redo stacks in Excel or Word.
- Linked list representation of real-world queues -Music player, image viewer

MODULE-1

Introduction

- Data is a value or a set of values. Data as such may not convey any meaning.

Example 90, Bob

- When data is interpreted to convey a meaning we call it an information.

For example Bob scored 90 marks

- A data item refers to a single unit of values. Data items that are divided into sub items are called group items.

Example :Name of an employee can be divided to three subitems- first name, middle name and last name

- Data items that are not divided into sub items are called elementary items.

Data Structures: A data structure is a particular method of storing and organizing data in acomputer so that it can be used efficiently. The data Structure is classified into
a. Primitive data structure: These can be manipulated directly by the machine instructions. Example integer character, float etc
b. Non primitive data structures: They cannot be manipulated directly by the machine instructions. The non primitive data structures are further classified into linear and non linear data structures.

- Linear data structures: show the relationship of adjacency between the elements of the data structures. Example are arrays, stacks, queues, list etc.
- Non linear data structure: They do not show the relationship of adjacency between the elements. Example are Trees and graphs

Operations on data structures

1. Create: Creating a new data structure
2. Insert: Adding a new record to the structure.
3. Delete: Removing the record from the structure.
4. Search: Finding the location of a particular record with a given key value, or finding the location of all records which satisfy one or more conditions.
5. Sort: Managing the data or record in some logical order (Ascending or descending order).
6. Merge: Combining the record in two different sorted files into a single sorted file.
7. Traversal: Accessing each record exactly once so that certain items in the record may be processed.

Review of arrays

- Array is a collection of elements of the same data type
- An array is declared by appending brackets to the name of a variable.

For example

int list[5]; // declares an array that can store 5 integers
In C all array index start at 0 and so list[0], list[1], list[2], list[3], list[4] are the names of the five array elements each of which contains an integer value.

Structures : Structure is basically a user-defined data type that can store related information thatmay be of same or different data types together.

The major difference between a structure and an array is that an array can store only information of same data type. A structure is therefore a collection of variables under a single name. The variables within a structure are of different data types and each has a name that is used to select it from the structure.

For example,

Struct student \{
char sname[10];
int age;
float average_marks;
\} st;
It creates a variable whose name is $\boldsymbol{s t}$ and that has three fields:

- a name that is a character array
- an integer value representing the age of the student
- a float value representing the average marks of the individual student.

To assign values to these fields dot operator (.) is used as the structure member operator. We use this operator to select a particular member of the structure.
strcpy(st.sname,"james");
st.age $=10$;
st.average_marks $=35$;
We can create our own structure data types by using the typedef statement. Consider an example that creates a structure for the employee details.

```
typedef struct Employee {
    char name[10];
    int age;
    float salary;
};
    or
typedef struct {
    char name[10];
    int age;
    float salary;
} Employee;
```

Comparing structures: Return TRUE if employee 1 and employee 2 are the same otherwise return FALSE

```
int EmployeeEqual(employee p1, Employee p2)
{
    if (!strcmp(p1.name, p2.name))
        return FALSE;
    if (p1.age != p2.age)
        return FALSE;
    if (p1.salary != p2.salary)
        return FALSE;
        return TRUE;
}
```

A typical function call might be:
if (EmployeeEqual(p1,p2))
printf("The two employee are the sameln");
else
printf("The two Employee are not the sameไn");
Nested Structure: A structure can be embedded within another structure. That is a structure can have another structure as its member such a structure is called a nested structure.

For example, associated with our employee structure we may wish to include the date of Birth of an employee by using nested stucture

```
typedef struct {
    int month;
    int day;
    int year;
} date;
typedef struct {
    char name[10];
    int age;
    float salary;
    date dob;
}employee;
```

If we have to store the information of a person we declare a variable as Employee p1;

A person born on September 10, 1974, would have the values for the date struct set as:
p1.dob.month $=9$;
p1.dob.day = 10;
p1. dob.year = 1974;
Array of Structures: In the case of a student or the employee we may not store the details of only 1 student or 1 employee. When we have to store the details of a group of students we can declare an array of structures.

Example: struct student s[10];

Self-Referential Structures: A self-referential structure is one in which one or more of its data member is a pointer to itself. They require dynamic memory allocation (malloc and free) to explicitly obtain and release memory.

Example:

```
typedef struct list {
        int data;
        list *link;
    };
```

- Each instance of the structure list will have two components, data and link. data is a single character, while link is a pointer to a list structure.
- The value of link is either the address in memory of an instance of list or the null pointer.

Consider these statements, which create three structures and assign values to their respective fields: list item1, item2, item3;

$$
\text { item } 1 . \text { data }=5
$$

item2.data $=10$
item3. data $=15$
item1.link $=$ item2.link $=$ item3.link $=$ NULL;
We can attach these structures together by replacing the null link field in item 2 with one that points to item 3 and by replacing the null link field in item 1 with one that points to item 2 .
item1.link = \&item2; item2.1ink = \&item3;

Unions: A union is a user-defined data type that can store related information that may be of different data types or same data type, but the fields of a union must share their memory space. This means that only one field of the union is "active" at any given time.

Example1: Suppose a program uses either a number that is int or float we can define a union as

> Union num
int a;
float b ;
\};
Union num n1;
Now we can store values as $n 1 . a=5$ or $\mathrm{n} 2 . \mathrm{b}=3.14$ only one member is active at a point of time.

Pointer variables, Declaration and Definition

- Pointer variable is a variable that stores the address of another variable.
- Declaring Pointer variables

A variable can be declared as a pointer variable by using an indirection operator(*)
Syntax: type * identifier; // type signifies the type of the pointer variable For example

$$
\begin{aligned}
& \text { char *p; } \\
& \text { int } * \mathrm{~m} ;
\end{aligned}
$$

 pointer variable of type integer.

Initialization of pointer variables: Uninitialized variables have unknown garbage values stored in them, similarly uninitialized pointer variables will have uninitialized memory address stored inside them which may be interpreted as a memory location, and may lead to runtime error.

These errors are difficult to debug and correct, therefore a pointer should always be initialized with a valid memory address.

A pointer can be initialized as follows
int a;
int *p;
//Here the variable a and the pointer variable p are of the same data type. To make p to point at a we have to write a statement
$\mathrm{p}=\& \mathrm{a} ; \quad / /$ now the address of a is stored in the pointer variable p and now p is said to be pointing at a.

If we do not want the pointer variable to point at anything we can initialize it to point at NULL
For example: int $* \mathrm{p}=$ NULL;
When we dereference a null pointer, we are using address zero, which is a valid address in the computer.

NOTE: A pointer variable can only point at a variable of the same type.
We can have more than one pointer variable pointing at the same variable. For example
int a ;
int *p,*q;
$\mathrm{p}=\& \mathrm{a}$;
$\mathrm{q}=\& \mathrm{a}$;
now both the pointer variable p and q are pointing at the same variable a . There is no limit to the number of pointer variable that can point to a variable.

Accessing variables through pointers

- A Variable can be accessed through a pointer variable by using an indirection operator.
- Indirection operator $(*)$: An indirection operator is a unary operator whose operand must be a pointer value.
- For example to access a variable a through a pointer variable p we have to code it as follows Void main()
\{

```
int a=5;
int *p
p=&a;// p is now pointing at a
*p=*p+1
printf(* %d %d %p", a, *p,p);
```

\}

Output: 66 XXXXX(address of variable a)
Now the value of a is modified through the pointer variable p

Note:

$>$ we need parenthesis for expressions like $(* \mathrm{p})++$ as the precedence of postfix increment is more than precedence of the indirection operator $(*)$. If the parenthesis is not used the address will be incremented.
$>$ The indirection and the address operators are the inverse of each other when combined in an expression such as *\&a they cancel each other

Write a program to add two numbers using pointers.

```
#include <stdio.h>
int main()
{
        int num1, num2, *p, *q, sum;
        printf("Enter two integers to add\n");
        scanf("%d%d", &num1, &num2);
                p = &num1; q = &num2;
                sum = *p + *q;
    printf("Sum of the numbers = %d\n", sum)
    return 0;
    }
```


Write a program to swap two numbers.

```
#include <stdio.h>
int main()
{
        int num1, num2, *p, *q, sum;
        printf("Enter two integers to swap\n");
        scanf("%d%d", &num1, &num2);
            p =&num1; q = &num2;
            temp = *p;
            *p = *q;
            *q = temp;
        printf("After Swapping p = %d, q = %d\n", p,q);
        return 0;
}
```


Pointers and Functions

When we call a function by passing the address of a variable we call it as pass by reference. By passing the address of variables defined in main we can directly store the data in the calling function rather returning the value. Pointers can also be used when we have to return more than one value from a function

Program to swap two characters using Functions.

void main()

\{

char a ,b;

printf("\nenter two characters\n");
scanf("\%c \%c", \&a,\&b);
printf("the value before swap: \%c \%c" a,b);
swap(\&a,\&b);
printf("the value after swap: \%c \%c" a,b);
\}
void swap(char *p1,char *p2)
\{
char temp;
temp=*p1;
*p1=*p2;
*p2=temp;
\}

Memory allocation functions: In high level languages the data structures are fully defined at compile time. Modern languages like C can allocate memory at execution this feature is known as dynamic memory allocation.
There are two ways in which we can reserve memory locations for a variable

- Static memory allocation: the declaration and definition of memory should be specified in the source program. The number of bytes reserved cannot be changed during runtime
- Dynamic memory allocation : Data definition can be done at runtime .It uses predefined functions to allocate and release memory for data while the program is running. To use dynamic memory allocation the programmer must use either standard data types or must declare derived data types

Memory usage: Four memory management functions are used with dynamic memory. malloc, calloc and realloc are used for memory allocation. The function free is used to return memory when it is not used.

Heap: It is the unused memory allocated to the program When requests are made by memory allocating functions, memory is allocated from the heap at run time.

Memory Allocation (malloc)

- When a malloc function is invoked requesting for memory, it allocates a block of memory that contains the number of bytes specified in its parameter and returns a pointer to the start of the allocated memory.
- When the requested memory is not available the pointer NULL is returned.
syntax: void *malloc (size_t size);
Example: void *malloc(sizeof(int));
- The pointer returned by the malloc function can be type cast to the pointer of the required type by making use of type cast expressions

Example: To allocate an integer in the heap we code

```
int *pint
pint=(int*)malloc(sizeof(int))
```

Releasing memory (free): When memory locations allocated are no longer needed, they should be freed by using the predefined function free.

Syntax: free(void*);
Example: int ${ }^{*} \mathrm{p}, \mathrm{a}$;
$\mathrm{p}=\& \mathrm{a}$;
free(p);

Program showing the allocation of memory using malloc

int i,*pi;
float f,*pf;
Pi= (int*) malloc (sizeof((int));
Pf=(float *) malloc(sizeof(float));
*pi= 1344;
*pf=3.14
$\operatorname{Printf("integer~value~}=\% \mathrm{~d}$ float value $=\% \mathrm{f}$ ", ${ }^{*}$ pi, *pf);
Free(pi);
Free(pf);

Contiguous memory allocation (calloc)

- This function is used to allocate contiguous block of memory. It is primarily used to allocate memory for arrays.
- The function calloc() allocates a user specified amount of memory and initializes the allocated memory to 0 .
- A pointer to the start of the allocated memory is returned.
- In case there is insufficient memory it returns NULL
syntax : void * calloc (size_t count, size_t size);
Example: To allocate a one dimensional array of integers whose capacity is n the following code can be written.

$$
\begin{aligned}
& \text { int *ptr } \\
& \text { ptr=(int*)calloc(n,sizeof(int)) }
\end{aligned}
$$

Reallocation of memory(realloc): The function realloc resizes the memory previously allocated by either malloc or calloc.
syntax: Void * realloc (void * ptr, size_t new_size);

Example

int *p;
$\mathrm{p}=($ int $*)$ calloc $(\mathrm{n}, \operatorname{sizeof}($ int $))$
$\mathrm{p}=$ realloc $(\mathrm{p}, \mathrm{s}) \quad / *$ where s is the new size ${ }^{* /}$
The statement realloc (p, s)-- Changes the size of the memory pointed by p to s . The existing contents of the block remain unchanged.
$>$ When $\mathrm{s}>$ oldsize(Block size increases) the additional (s - oldsize)have unspecified value
$>$ When s <oddsize (Block size reduces) the rightmost (oldsize-s) bytes of the old block are freed.
$>$ When realloc is able to do the resizing it returns a pointer to the start of the new block
$>$ When is not able to do the resizing the old block is unchanged and the function returns the value NULL.

Dangling Reference: Once a pointer is freed using the free function then there is no way to retrievethis storage and any reference to this location is called dangling reference.

Example2:

```
    int i,*p,*f;
    i=2;
    p=&i;
    f=p;
    free(p);
    *f=*f+2 /* Invalid dangling reference*/
```

The location that holds the value 2 is freed but still there exist a reference to this location through f and pointer f will try to access a location that is freed so the pointer f is a dangling reference Pointers can be dangerous: When pointers are used the following points needs to be taken care

1. When a pointer is not pointing at any object it is a good practise to set it to NULL so that there is no attempt made to access a memory location that is out of range of our program or that does not contain a pointer reference to the legitimate object.
2. Use explicit type casts when converting between pointer types.
```
int *pi;
float *pf;
Pi= (int*) malloc (sizeof((int));
Pf= (float*)pi;
```

3. Define explicit return types for functions. If the return type is omitted it defaults to integer which has the same size as a pointer and can be later interpreted as a pointer

Dynamically allocated Arrays

One dimensional array: When we cannot determine the exact size of the array the space of the array can be allocated at runtime.

For example consider the code given below

```
int i,n,*list;
printf("enter the size of the array");
scanf("%d",&n);
if (n<1)
{
fprintf(stderr,"Improper values of n \n");
exit();
}
list=(int*) malloc (n*sizeof(n))/* or list=(int*)calloc(n,sizeof(int))
```


Two dimensional Arrays

- Example for representing a 2 dimensional array int x[3][5];
- Here a one dimensional array is created whose length is 3 where each element of x is a one dimensional array of length 5

Figure 1.2 Memory Representation of two dimensional array

In C we find the element $x[i][j]$ by first accessing the pointer in $x[i]$. This pointer gives the address of the zeroth element of row i of the array. Then by adding j^{*} sizeof(int) to this pointer, the address of the jth element of the ith row is determined

Example to find $\mathrm{x}[1][3]$ we first access the pointer in $\mathrm{x}[1]$ this pointer gives the address of $\mathrm{x}[1][0]$ now by adding $3 *$ sizeof (int) the address of the element $x[1][3]$ is determined.

```
Program to create a 2 dimensional array at run time.
int ** maketwodarray(int rows,int cols)
{
    int **x, i;
    x=(int*)malloc( rows * sizeof(*x));
    for (i=0;i< rows; i++)
    x[i]= malloc(cols*sizeof(int));
    return x;
}
```

The function can be invoked as follows to allocate memory
int $* *$ twodarray
twodarray= maketwodarray $(5,10)$;

Arrays

Linear Arrays: A Linear Array is a list of finite number (n) of homogenous data elements.
a. The elements of the array are referenced by an index set consisting of n consecutive numbers(0. ..(n-1)).
b. The elements of the array are stored in successive memory locations
c. The number n of elements is called the length or size of the array. Length of the array can be obtained from the index set using the formula

Length $=$ Upper bound - Lowe bound +1
d. The elements of an array may be denoted by $a[0], a[2] \ldots a[n-1]$. The number k in $a[k]$ is called a subscript or index and $\mathrm{a}[\mathrm{k}]$ is called the subscripted value.
e. An array is usually implemented as a consecutive set of memory locations

Declaration: Linear arrays are declared by adding a bracket to the name of a variable. The size of the array is mentioned within the brackets.
$\mathbf{E g}$:- int list[5]; // Declares an array containing five integer elements.
In C all arrays start at index 0 . Therefore, list[0], list[1], list[2], list[3], and list[4] are the names of the five array elements ,each of which contains an integer value.

Representation of Linear Arrays in memory

- When the compiler encounters an array declaration such as int list[5], to create list, it allocates five consecutive memory locations. Each memory location is large enough to hold a single integer.
- The address of the first element list[0], is called the base address
base address=address(list[0])
- Using the base address the address of any element of list can be calculated using the formula address $($ list $[\mathrm{k}])=$ base addres + w.k
// where w is the size of each element in the array list

Example: int list[5]

- The elements of the array is list[0] list[4]
- If the size of an integer on the machine is denoted by sizeof(int), then the memory Address(list $[\mathrm{k}]$)= base address+ sizeof (int).k.

Variable Memory Address canlculation

Let α the base address, the address of list[0]
Let $w=\operatorname{sizeof}($ int $)$

$$
\begin{aligned}
& \operatorname{address}(\operatorname{list}[1])=\alpha+\mathrm{w}^{*} 1 \\
& \operatorname{address}(\operatorname{list}[2])=\alpha+\mathrm{w}^{*} 2 \\
& \operatorname{address}(\operatorname{list}[3])=\alpha+\mathrm{w}^{*} 3 \\
& \operatorname{address}(\operatorname{list}[4])=\alpha+\mathrm{w}^{*} 4
\end{aligned}
$$

Multi dimensional arrays

Two dimensional arrays: C uses the array of array representation to represent a multidimensional array. In this representation a 2 dimensional array is represented as a one dimensional array in which each element is itself a one dimensional array.

- A two dimensional $m \mathrm{Xn}$ array A is a collection of $\mathrm{m}^{*} \mathrm{n}$ data elements such that each element is specified by a pair of integers called subscripts.
- An element with subscript i and j will be represented as $A[i][j]$
- Declaration: int A[3][5];
// It declares an array A that contains three elements where each element is a one dimensional array. Each one dimensional array has 5 integer elements.

Example : A 2 dimensional array A[3][4] is represented as

Representation of two dimensional arrays in memory: A two dimensional $m \mathrm{X} n$ array A is stored in the memory as a collection of $\mathrm{m}^{*} \mathrm{n}$ sequential memory locations. If the array is stored column by column it is called column major order and if the array is stored row by row it is called row major order.

Example: Representation of the two dimensional array A[3][4] in row major order and column major order

Row Major Order

A	Subscript$\mathrm{A}[0][0]$	
		Column1
	A[1][0]	
	A[2][0]	
	A[0][1]	Column2
	A[1][1]	
	A[2][1]	
	A[0][2]	Column3
	A[1][2]	
	A[2][2]	
	A[0][3]	Column4
	A[1][3]	
	A[2][3]	

Column major order

Figure 1.1 Representation of Two Dimensional array

- Using the base address, the address of any element in an array A of size row X col can be calculated using the formula.
- Row Major order

Address $(\mathrm{A}[\mathrm{i}][\mathrm{j}])=$ Base address $+\mathrm{w}\left[\mathrm{i}^{*} \mathrm{col}+\mathrm{j}\right]$ considering the array indexing starts at 0

- Column Major order

Address $(\mathrm{A}[\mathrm{i}][\mathrm{j}])=$ Base address $+\mathrm{w}[\mathrm{i}+$ row. j$]$ considering the array indexing starts at 0

Example : When the compiler encounters an array declaration such as int A[3][4] it creates an array A and allocates 20 consecutive memory locations. Each memory location is large enough to hold a single integer.

Let α be the address of the first element $\mathrm{A}[0][0]$, is called the base address
Considering Row major order: Using the bases address we can calculate the addresses of other element

$$
\begin{aligned}
& \text { Address of } A[0][1]=100+2[0 * 4+1]=100+2=102 \\
& \text { Address of } A[0][2]=100+2[0 * 4+2]=100+4=104 \\
& \text { Address of } A[1][0]=100+2[1 * 4+0]=100+8=108 \\
& \text { Addres of } A[2][3]=100+2[2 * 4+3]=100+22=122
\end{aligned}
$$

Representation of Multidimensional Arrays: In C, multidimensional arrays are represented using the array-of-arrays representation The linear list is then stored in consecutive memory just as we store a one-dimensional array.

If an n-dimensional array a is declared as a[upper0][upper1] \cdots [uppern-1]; then the number of elements in the array is: upper 0^{*} upper $_{1} * \ldots$. upper $_{\text {n-1 }}$ also represented as

$$
\prod_{i=0}^{n-1} \text { upper }_{i}
$$

where Π is the product of the upperi's. For instance, if we declare a as $\mathrm{a}[10][10][10]$, then we require $10 \cdot 10 \cdot 10=1000$ memory cell to hold the array. There are two common ways to represent multidimensional arrays: row major order and column major order. We consider only row major order here. As its name implies, row major order stores multidimensional arrays by rows.

Two dimensional arrays

- For instance, we interpret the two dimensional Array A[upper0][upper1] as upper0 rows, , each row containing upper1 elements.
- If we assume that α the base address is the address of $\mathrm{A}[0][0]$
- Then the address of an arbitrary element, Address $(\mathrm{a}[\mathrm{i}][\mathrm{j}])=\alpha+\mathrm{i} \cdot$ upper $1+\mathrm{j}$ \qquad
- Here the size is not considered. Considering the size the formula can be written as Address $(a[i][j])=\alpha+w(i \cdot$ upper $1+j)$ where w is the size of each unit of memory location.

Representation of a three-dimensional array

- A[upper0][upper1][upper2], we interpret the array as upper0 two dimensional arrays of dimension upper $1 \times$ upper2.

$$
\begin{equation*}
\text { address of } A[i][j][k]=\square \alpha+i \cdot \text { upper } 1 \cdot \text { upper } 2+j \cdot \text { upper } 2+k \tag{2}
\end{equation*}
$$

Representation of a fourth-dimensional array

- A[upper0][upper1][upper2][upper3]
- We interpret the array as upper0 three dimensional arrays of dimension upper1 x upper2 x upper3.
address of $A[i][j][k][1]=\lceil\alpha+i \cdot$ upper1•upper2.upper3 $+\mathrm{j} \cdot$ upper2..upper3 +k. upper3 +1

Representation of an n-dimensional array

- Generalizing on the preceding discussion, we can obtain the addressing formula for any element $\mathrm{A}[\mathrm{i} 0][\mathrm{i} 1] \ldots$ [in-1] in an n dimensional array declared as:

A[upper0][upper1] ... [uppern-1]

- If α is the address for $\mathrm{A}[0][0] \ldots[0]$ the base address Then

$$
\text { Address of a }[\mathrm{i} 0][0][0][0] \ldots[0]=\square \alpha+\mathrm{i} 0 \text { upper1 upper2 } \ldots \text { upper } \mathrm{n}-1
$$

// address of a[i0][i1][0] $\ldots[0]=\square \alpha+\mathrm{i} 0$ upper1 upper2 \ldots uppern-1 +i 1 upper2 upper3 \ldots uppern-1

- Repeating in this way the address for $\mathrm{A}[\mathrm{i} 0][\mathrm{i} 1]$... [in-1] is=

$$
\begin{aligned}
& \alpha+i_{0} \text { upper }_{1} \text { upper }_{2} \ldots \text { upper }_{n-1} \\
& \quad+i_{1} \text { upper }_{2} \text { upper }_{3} \ldots \text { upper }_{n-1} \\
& \quad+i_{2} \text { upper }_{3} \text { upper }_{4} \ldots \text { upper }_{n-1} \\
& \quad \cdot \\
& \quad \\
& \quad+i_{n-2} \text { upper }_{n-1} \\
& \quad+i_{n-1} \\
& =\alpha+\sum_{j=0}^{n-1} i_{j} a_{j} \text { where: }\left\{\begin{array}{l}
a_{j}=\prod_{k=j+1}^{n-1} \text { upper }_{k} \quad 0 \leq j<n-1 \\
a_{n-1}=1
\end{array}\right.
\end{aligned}
$$

Array Operations: Operations that can be performed on any linear structure whether it is an array or a linked list include the following
Traversal- processing each element in the list
Search- Finding the location of the element with a given key.
Insertion- Adding a new element to the list
Deletion- Removing an element from the list.
Sorting- Arranging the elements in some type of order.
Merging- combining two list into a single list.
Traversing Linear Arrays: Traversing an array is accessing and processing each element exactly once. Considering the processing applied during traversal as display of elements the array can be traversed as follows

```
void displayarray(int a[])
{
    int i;
    printf("The Array Elements are:\n");
    for(i=0;i<n;i++)
    printf("%d\t",a[i]);
}
```


Insertion

- Inserting an element at the end of the array can be done provided the memory space allocated for the array is large enough to accommodate the additional element.
- If an element needs to be inserted in the middle then all the elements form the specified position to the end of the array should be moved down wards to accommodate the new element and to keep the order of the other element.
- The following function inserts an element at the specified position

```
void insertelement(int item, int pos,int *n, int a[],)
{
        int i;
    if (pos<0 | pos>n)
        printf("Invalid Position\n");
```

```
    else
    {
        for(i=n-1;i>=pos;i--)
        a[i+1]=a[i]; //Make space for the new element in the given position
        a[pos]=element;
        *n++;
    }
}
```


Deletion

- If an element needs to be deleted in the middle then all the elements form the specified position to the end of the array should be moved upwards to fill up the array.
- The following function deletes an element at the specified position

```
void deleteelement(int a[],int pos,int* n)
{
    int i;
    if (pos<0 | pos>n-1)
            printf("Invalid Position\n");
    else
    {
    printf("The Deleted Element is %d\n",a[pos]);
    for(i=pos;i<n;i++)
            a[i]=a[i+1]; //Delete by pushing up other elements
        *n--;
        }
}
```

Sorting: Sorting refers to the operation of rearranging the elements of an array in increasing or decreasing order.

Example: Write a program to sort the elements of the array in ascending order using bubble sort.

```
#include<stdio.h>
void main()
{
int a[10],i,j,temp,n;
printf("enter the size of the array: ");
scanf("%d",&n);
printf("enter the elements of the array\n");
for(i=0;i<n;i++)
scanf("%d",&a[i]);
for(i=1;i<=n-1;i++)
    for(j=0;j<n-i ;j++)
    if (a[j] >a[j+1])
    {
        temp=a[j];
        a[j]=a[j+1];
```

```
    a[j+1]= temp;
        printf("the sorted array is \n");
        for(i=0;i<n;i++)
        printf("%d \t",a[i]);
        return(0);
}
```


Complexity of the bubble sort algorithm is $\mathbf{O}\left(\mathbf{n}^{2}\right)$

- The time for sorting is measured in terms of the number of comparisons. In the bubble sort there are $\mathrm{n}-1$ comparison in the first pass which places the largest element in the last position.
- There are $\mathrm{n}-2$ comparison in the second pass which places the second largest element in the next to last position and so on, therefore

$$
\mathrm{C}(\mathrm{n})=(\mathrm{n}-1)+(\mathrm{n}-2)+2+1=\mathrm{n}(\mathrm{n}-1) / 2=\mathrm{n}^{2} / 2=\mathrm{O}\left(\mathrm{n}^{2}\right)
$$

Searching:

- Let DATA be a collection of data elements in memory and suppose a specific ITEM of information is given.
- Searching refers to the operation of finding the Location LOC of the ITEM in DATA or printing a message that the item does not appear here.
- The search is successful if the ITEM appear in DATA and unsuccessful otherwise.

The algorithm chosen for searching depends on the way the data is organised. The two algorithm considered here is linear search and binary search.

LINEAR SEARCH: This program traverses the array sequentially to locate

```
key#include<stdio.h>
#include<stdlib.h>
void main()
{
    int a[10],i,key,pos,n,flag=0;
    printf("enter the size of the array: ");
    scanf("%d",&n);
    printf("enter the elements of the array\n");
    for(i=0;i<n;i++)
    scanf("%d",&a[i]);
    printf("enter the key \n");
    scanf("%d",&key);
    for(i=0;i<=n-1;i++)
        if (a[i]== key)
        {
        printf("key %d found at %d",key,pos+1);
        exit();
    }
    printf("key not found");
    }
```

Complexity of Linear search: The complexity is based on the number of comparison $\mathrm{C}(\mathrm{n})$ required to find the key in the array element.

- The best case occurs when the key is found at first position. $\mathrm{C}(\mathrm{n}) \in \mathrm{O}(1)$
- Worst case occurs when key element is not found in the array or when the element is in the last position. Thus in worst case the running time is proportional to $\mathbf{n} \mathbf{C}(\mathbf{n}) \in \mathbf{O}(\mathbf{n})$
- The running time of the average case uses the probabilistic notation of expectation. Number of comparison can be any number from 1 to n and each occurs with probability $\mathrm{p}=1 / \mathrm{n}$ then

$$
\begin{aligned}
\mathrm{c}(\mathrm{n}) \quad & =1.1 / \mathrm{n}+2.1 / \mathrm{n}+\ldots \ldots n .1 / \mathrm{n} \\
& =(1+2+3 \ldots \ldots . . .+n) .1 / \mathrm{n} \\
& =\mathrm{n}(\mathrm{n}+1) / 2.1 / \mathrm{n}=\mathrm{n}+1 / 2
\end{aligned}
$$

BINARY SEARCH: This algorithm is useful when the array is sorted.
For example when searching for a name in a telephone directory this algorithm is more efficient than linear search as the number of element to search is reduced by half in each iteration.

```
#include<stdio.h>
#include<stdlib.h>
int main()
    {
    int a[10],i,key,mid,low,high,n;
    printf("enter the size of the array: ");
    scanf("%d",&n);
    printf("enter the elements of the array in ascending order\n");
    for(i=0;i<n;i++)
    scanf("%d",&a[i]);
    printf("enter the key \n");
    scanf("%d",&key);
    low=0;
    high=n-1;
    while(low<=high)
    {
        mid=(low+high)/2;
        if (key==a[mid])
        {
            printf("element %d found at %d",key,mid+1);
            exit(0);
    }
    else
    {
        if (key<a[mid])
            high = mid-1;
            else
                low=mid+1;
    }
}
printf("key not found");
return(0);
}
```


Complexity of binary search algorithm :

- The complexity is based on the number of comparison $C(n)$ required to find the key in the array element.
- Each comparison reduces the sample size in half so $C(n)$ is of the order $\log _{2} n+1$

Limitation of binary search :

1. The list must be sorted
2. One must have a direct access to the middle element in any subset.

Polynomials: A polynomial is a sum of terms, where each term has a form $a x^{e}$, where x is the variable, a is the coefficient, and e is the exponent.

Example for polynomials :

$$
\begin{aligned}
& A(x)=3 x^{20}+2 x^{5}+4 \\
& B(x)=x 4+10 x 3+3 x 2+1
\end{aligned}
$$

The largest (or leading) exponent of a polynomial is called its degree. Coefficients that are zero are not displayed.

- Standard mathematical definitions for the sum and product of polynomials are:
- Assume that we have two polynomials

$$
A(x)=\sum a_{i} x^{i} \quad B(x)=\sum b_{i} x^{i}
$$

then

$$
\begin{aligned}
& A(x)+B(x)=\sum\left(a_{i}+b_{i}\right) x^{i} \\
& A(x) \cdot B(x)=\sum\left(a_{i} x^{i} \cdot \sum\left(b_{j} x^{j}\right)\right)
\end{aligned}
$$

Polynomial is objects: a set of ordered pairs of <ei, ai> where ai is Coefficients and ei is Exponents, ei are integers >=0

Functions:

for all poly,poly1,poly2 \in Polynomial,coef \in Coefficients, expon \in Exponents

Polynomial Zero()	::=	return the polynomial, $\mathrm{p}(\mathrm{x})=0$
Boolean IsZero(poly)	::=	if (poly) return FALSE else return TRUE
Coefficient Coef(poly,expon)	::=	if (expon \in poly) return its coefficient else return zero
Exponent LeadExp(poly)	::=	return the largest exponent in poly
Polynomial Attach(poly,coef,expon)	::=	if (expon \in poly) return error else return the polynomial poly with the term <coef, expon> inserted
Polynomial Remove(poly,expon)	::=	if (expon \in poly) return the polynomial poly with the term whose exponent is expon deleted else return error
Polynomial SingleMult(poly,coef,expon)	::=	return the polynomial poly $\cdot \operatorname{coef} \cdot \mathrm{x}^{\text {expon }}$
Polynomial Add(poly1,poly2)	::=	return the polynomial poly1 + poly2
Polynomial Mult(poly1,poly2)	::=	return the polynomial poly1 poly2
end Polynomial	::=	

Polynomial Representation:

- A polynomial can be represented as an array of structures as follows.
- Only one global array, terms, is used to store all the polynomials.
- The C declarations needed are:

```
# define MAX_TERMS 100 /*size of terms array*/
typedef struct {
float coef;
int expon;
} polynomial;
polynomial terms[MAX_TERMS];
int avail = 0;
```

Consider the two polynomials

$$
\begin{aligned}
& \mathrm{A}(\mathrm{x})=2 \mathrm{x}^{1000}+1 \text { and } \\
& \mathrm{B}(\mathrm{x})=\mathrm{x}^{4}+10 \mathrm{x}^{3}+3 \mathrm{x}^{2}+1 .
\end{aligned}
$$

Figure below shows how these polynomials are stored in the array terms. The index of the first term of A and B is given by startA and startB, respectively, finishA and finishB give the index of the last term of A and B respectively. The index of the next free location in the array is given by avail.

For our example, $\operatorname{start} \mathrm{A}=0$, finish $\mathrm{A}=1, \operatorname{start} \mathrm{~B}=2$, finishB $=5$, and avail $=6$.

Figure 1.3 Representation of polynomial in array

- There is no limit on the number of polynomials that we can place in terms.
- The total number of nonzero terms must not be greater than MAX_TERMS.
since $A(x)=2 x 1000+1$ uses only six units of storage: one for startA, one for finishA, two for the coefficients, and two for the exponents. However, when all the terms are nonzero, the current representation requires about twice as much space as the first one. This representation is useful only when the number of non zero terms are more.

Polynomial addition

- C function that adds two polynomials, A and B to obtain the resultant polynomial $\mathrm{D}=\mathrm{A}+\mathrm{B}$. The polynomial is added term by term.
- The attach function places the terms of D into the array, terms starting at position avail,.
- If there is not enough space in terms to accommodate D , an error message is printed to the standard error device and we exit the program with an error condition.
void padd(int startA,int finishA,int startB, int finishB, int *startD,int *finishD)
\{

```
/ * add \(\mathrm{A}(\mathrm{x})\) and \(\mathrm{B}(\mathrm{x})\) to obtain \(\mathrm{D}(\mathrm{x})\) */
float coefficient;
*startD = avail;
while (startA <= finishA \& \& startB <= finishB)
    \{
                switch(COMPARE(terms[startA].expon, terms[startB].expon))
                \{
                        case -1: attach(terms[startB].coef,terms[startB].expon);
```

```
startB++;
break;
case 0: coefficient = terms[startA].coef + terms[startB].coef;
if (coefficient)
attach(coefficient,terms[startA].expon);
startA++;
startB++;
break;
case 1: attach(terms[startA].coef,terms[startA].expon);
startA++;
}
}
while(startA <= finishA)
    {
    attach(terms[startA].coef,terms[startA].expon); /* add in remaining terms of A(x) */
    startA++;
    }
    While(startB <= finishB)
    {
attach(terms[startB].coef, terms[startB].expon); /* add in remaining terms of B(x) */
startB++;
    }
    *finishD = avail-1;
}
/* add a new term to the polynomial */
void attach(float coefficient, int exponent)
{
    if (avail >= MAX_TERMS)
    {
        fprintf(stderr,"Too many terms in the polynomial\n") ;
    exit(EXIT_FAILURE);
    }
    terms[avail].coef = coefficient;
    terms[avail].expon = exponent;
    avail++;
}
```


Time complexity analysis

- The number of non zero terms in A and in B are the most important factors in the time complexity.
- The first loop can iterate m times and the second can iterate n times. So, the asymptotic computing time of this algorithm is $\mathrm{O}(n+m)$.

Sparse Matrices

- If a matrix contains m rows and n columns the total number of elements in such a matrix is $m^{*} n$. If m equals n the matrix is a square matrix.
- When a matrix is represented as a two dimensional array defined as a[max_rows][max_cols], we can locate each element quickly by writing $a[i][j]$ where i is the row index and j is the column index.
- Consider the matrix given below. It contains many zero entries, such a matrix is called a sparse matrix

| | Col0 | | Col1 | Col 2 | Col 3 | Col 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Col5

When a sparse matrix is represented as a two dimensional array space is wasted for example if we have 1000x 1000 matrix with only 2000 non zero element, the corresponding 2 dimensional array requires space for $1,000,000$ elements

Sparse Matrix objects: a set of triples, <row, column, value>, where row and column are integers and form a unique combination, and value comes from the set item.

Functions:

for all $a, b \in$ SparseMatrix, $x \in i t e m, i, j$, maxCol, maxRow \in index

Sparse MatrixCreate(maxRow, maxCol) $::=$	return a SparseMatrix that can hold up to maxItems = maxRow \times maxCol and whose maximum row size is maxRow and whose maximum column size is maxCol.
Sparse MatrixTranspose(a) $:=$	return the matrix produced by interchanging the row and column value of every triple.
Sparse MatrixAdd(a, b) :=	if the dimensions of a and b are the same return the matrix produced by adding corresponding items, namely those with identical row and column values else return error
Sparse MatrixMultiply $(\mathrm{a}, \mathrm{b}):=$	if number of columns in a equals number of rows in b return the matrix d produced by multiplying a by b according to the formula: $\mathrm{d}[\mathrm{i}][\mathrm{j}]=\Sigma(\mathrm{a}[\mathrm{i}][\mathrm{k}] \cdot \mathrm{b}[\mathrm{k}][\mathrm{j}])$ else return error.

Sparse Matrix Representation

- A Sparse matrix can be represented by using an array of triple <row, col, value >.
- In addition to ensure the operations terminate, it is necessary to know the number of rows and columns, and the number of nonzero elements in the matrix. Putting all this information together a sparse matrix can be created as follows
SparseMatrix Create(maxRow, maxCol) ::=
\#define MAX_TERMS $101 / *$ maximum number of terms +1*/
typedef struct \{
int col;
int row;
int value;
\} term;
term a[MAX_TERMS] ;

Example

	Col 0		$\mathrm{Col1}$	Col 2	Col 3	Col 4
Row0	15	0	0	22	0	-15
Row1	0	11	3	0	0	0
Row2	0	0	0	-6	0	0
Row3	0	0	0	0	0	0
Row4	91	0	0	0	0	0
Row5	0	0	28	0	0	0

a) Two dimensional array

	Row	Col	Value
$\mathbf{a}[0]$	6	6	8
$\mathbf{a}[1]$	0	0	15
$\mathbf{a}[2]$	0	3	22
$\mathbf{a}[3]$	0	5	-15
$\mathbf{a}[4]$	1	1	11
$\mathbf{a}[5]$	1	2	3
$\mathbf{a}[6]$	2	3	-6
$\mathbf{a}[7]$	4	0	91
$\mathbf{a}[8]$	5	2	28

b) Sparse matrix stored as triples

Figure 1.4 two dimensional array and its sparse matrix stored as triples
Write a program to store a sparse matrix in triplet form and search an element specified by the user

```
#include<stdio.h>
#include<stdlib.h>
int main()
{
struct sparse
{
        int r;
        int c;
        int v;
};
struct poly s[100];
int ele,i,j,k,n,m,key;
printf("enter the size of the array ; ");
scanf("%d %d",&m,&n);
k=1;
s[0].r=m;
s[0].c=n;
printf("\n enter the elements of the array\n");
for(i=0;i<m;i++)
for(j=0;j<n;j++)
{
    scanf("%d",&ele);
if(ele !=0)
{
    s[k].r=i;
    s[k].c=j;
    s[k].v= ele;
    k++;
```

```
}
s[0].v=k-1;
}
for(i=0;i<=s[0].v;i++)
printf(" %d\t %d \t %d \n ",s[i].r, s[i].c, s[i].v);
printf(" enter the key to be searched");
scanf("%d",&key);
for(i=0;i<=s[0].v;i++)
    if (key== s[i].v)
    {
        printf("element found at %d row and %d column",s[i].r,s[i].c);
        exit(0);
    }
printf("element not found ");
return(0);
}
```

Transposing a Matrix: To transpose a matrix we must interchange the rows and columns. This means that each element $\mathrm{a}[\mathrm{i}][\mathrm{j}]$ in the original matrix becomes element $\mathrm{b}[\mathrm{j}][\mathrm{i}]$ in the transpose matrix.

The algorithm finds all the elements in column 0 and store them in row 0 of the transpose matrix, find all the elements in column 1 and store them in row 1, etc." Since the original matrix was ordered by rows and the columns were ordered within each row. The transpose matrix will also be arranged in ascending order. The variable, currentb, holds the position in b that will contain the next transposed term. The terms in b is generated by rows by collecting the nonzero terms from column i of a

The transpose b of the sparse matrix a of figure $1.4 b$ is shown in figure 1.5

	Row	Col	value
$\mathbf{b}[\mathbf{0}]$	6	6	8
$\mathbf{b}[1]$	0	0	15
$\mathbf{b}[2]$	0	4	91
$\mathbf{b}[3]$	1	1	11
$\mathbf{b}[4]$	2	1	3
$\mathbf{b}[5]$	2	5	28
$\mathbf{b}[6]$	3	0	22
$\mathbf{b}[7]$	3	2	-6
$\mathbf{b}[8]$	5	0	-15

Figure 1.5 Transpose of the matrix

Function to find the transpose of a sparse matrix

void transpose(term a[] , term b[]$) \quad / * \mathrm{~b}$ is set to the transpose of $\mathrm{a} * /$
\{
int $\mathrm{n}, \mathrm{i}, \mathrm{j}$, currentb;
$\mathrm{n}=\mathrm{a}[0]$.value; $\quad / *$ total number of elements */
$\mathrm{b}[0]$.row $=\mathrm{a}[0]$.col; $\quad / *$ rows in $\mathrm{b}=$ columns in $\mathrm{a} * /$
$\mathrm{b}[0]$.col $=\mathrm{a}[0]$. row; $/ *$ columns in $\mathrm{b}=$ rows in $\mathrm{a} * /$
$\mathrm{b}[0]$. value $=\mathrm{n}$;

```
if (n>0 ) /* non zero matrix */
{
currentb = 1;
for (i = 0; i < a[0].col; i++) /* transpose by the columns in a */
for (j=1; j <= n; j++)
    if (a[j].col == i) /* find elements from the current column */
    {
        b[currentb].row = a[j].col; /* element is in current column, add it to b */
        b[currentb].col = a[j].row;
        b[currentb].value = a[j].value;
        currentb++;
    }
}
}
```

Analysis of transpose: Hence, the asymptotic time complexity of the transpose algorithm is O (columns -elements).

```
Algorithm to Transpose of a two dimensional arrya of size rows }\times\mathrm{ columns
Input: two dimensional array A of size rows*columns
Output: two dimensional array B of size columns*rows that stores the transpose of A
for (i = 0; i < rows; i++)
for (j = 0; j < columns; j++)
b[j][i] = a[i][j];
time required is O(columns.rows)
```

Fast Transpose : We can transpose a matrix represented as a sequence of triples in O (columns + elements) time. This algorithm, fastTranspose is listed below .

It first determines the number of elements in each column of the original matrix. This gives us the number of elements in each row of the transpose matrix. From this information, we can determine the starting position of each row in the transpose matrix. We now can move the elements in the original matrix one by one into their correct position in the transpose matrix. We assume that the number of columns in the original matrix never exceeds $M A X _C O L$.

Program Fast Transpose

void fastTranspose(term a[] , term b[])
/* the transpose of a is placed in b */
\{
int rowTerms[MAX_COL], startingPos[MAX_COL];
int i, j, numCols $=\mathrm{a}[0] . \mathrm{col}$, numTerms $=\mathrm{a}[0]$.value;
$\mathrm{b}[0]$.row $=$ numCols;
$\mathrm{b}[0] . \mathrm{col}=\mathrm{a}[0]$.row;
$\mathrm{b}[0]$.value $=$ numTerms;
if (numTerms >0) \{ /* nonzero matrix */
for ($\mathrm{i}=0$; $\mathrm{i}<$ numCols; $\mathrm{i}++$)
rowTerms[i] = 0;
for $(\mathrm{i}=1 ; \mathrm{i}<=$ numTerms; $\mathrm{i}++$)
rowTerms[a[i].col]++;
startingPos[0] = 1;

```
    for ( \(\mathrm{i}=1 ; \mathrm{i}<\) numCols; \(\mathrm{i}++\) )
        startingPos[i] \(=\) startingPos \([\mathrm{i}-1]+\operatorname{rowTerms}[\mathrm{i}-1]\);
    for ( \(\mathrm{i}=1 ; \mathrm{i}<=\) numTerms \(; \mathrm{i}++\) )
    \{
        \(\mathrm{j}=\) startingPos[a[i].col]++;
        \(\mathrm{b}[\mathrm{j}]\). row \(=\mathrm{a}[\mathrm{i}]\).col;
        \(\mathrm{b}[\mathrm{j}] . \mathrm{col}=\mathrm{a}[\mathrm{i}]\). row;
        \(\mathrm{b}[\mathrm{j}]\).value \(=\mathrm{a}[\mathrm{i}]\).value;
    \}
```

\}
\}

Analysis of Fast Transpose

- The first two for loops compute the values for rowTerms, the third for loop carries out the computation of startingPos, and the last for loop places the triples into the transpose matrix. These four loops determine the computing time of fastTranspose.
- The bodies of the loops are executed numCols, numTerms, numCols - 1, and numTerms times, respectively. The computing time for the algorithm is O (columns + elements).
- However, transpose requires less space than fastTranspose since the latter function must allocate space for the rowTerms and startingPos arrays.

Strings: A string is an array of characters that is delimited by the null character (10).
Example1: Char s[100] $=\{$ "class" $\}$;
The string is internally represented as follows

\mathbf{C}	\mathbf{L}	\mathbf{A}	\mathbf{S}	\mathbf{S}	10
$\mathbf{S}[0]$	$\mathbf{S}[1]$	$\mathbf{S}[2]$	$\mathbf{S}[3]$	$\mathbf{S}[4]$	$\mathbf{S}[5]$

The same can also be declared as char $\mathrm{s}[\mathrm{]}=\{$ "class" $\}$;
Using this declaration the compiler would have reserved just enough space to hold each character word including the null character. In such cases we cannot store a string of length more than 5 in s

ADT string is Objects : a finite set of zero or more characters
Functions : for all $\mathbf{s , t} \in$ string, $\mathbf{i}, \mathbf{j}, \mathbf{m} \in$ non negative integers

String Null(m) $::=$	Return a string whose length is m characters long, but is initially set to NULL. We write NULL as """
Integer compare(s, t$)::=$	If s equals t return 0 Else if s precedes t return -1 Else return +1
Boolean ISNull(s) $::=$	lf (compare(s, NULL)) return FALSE Else return TRUE
Integer Length(s) $::=$	If(compare(s, NULL)) Returns the number of characters in s else returns 0
String concat(s,t) $::=$	If(compare($\mathrm{t}, \mathrm{NULL}))$ Return a string s whose elements are those of s followed by those of t

String substr$(\mathrm{s}, \mathrm{i}, \mathrm{j})::=$	$\operatorname{If}((\mathrm{j}>0) \& \&(\mathrm{i}+\mathrm{j}-1)<$ length $(\mathrm{s}))$ Return the string containing the characters of s at position i to $\mathrm{i}+\mathrm{j}-1$ Else return NULL

C provides several string functions which we access by including the header file string.h Given below is a set of C string functions

char *strcat(char *dest, const char *src)	Appends the string pointed to, by $s r c$ to the end of the string pointed to by dest.
char *strncat(char *dest, const char *src, size_t n)	Appends the string pointed to, by src to the end of the string pointed to, by dest up to n characters long.
int $\operatorname{strcmp}($ const char $*$ str1, const char *str2)	Compares the string pointed to, by strl to the string pointed to bystr2.
int strncmp(const char *str1, const char *str2, size_t n)	Compares first n characters Returns<0 if $\operatorname{str} 1<\operatorname{str} 2$ 0 is $\operatorname{str} 1=\operatorname{str} 2$ >0 if $\operatorname{str} 1>\operatorname{str} 2$
char *strcpy(char *dest, const char *src)	Copies the string pointed to, by src to dest and return dest
char *strncpy(char *dest, const char *src, size_t n)	Copies n characters from the string pointed to, by $s r c$ to dest and returns dest
size_t strlen(const char *str)	Returns the length of the string str . But not including the terminating null character.
char * strchr (const char *str, int c)	Returns pointer to the first occurrence of c in str . Returns NULL if not present
char *strrchr(const char *str, int c)	Returns pointer to the last occurrence of c in str . Returns NULL if not present
char *strtok(char *str, const char *delim)	Returns a token from string str. Tokens are separated by delim.
char *strstr(char *str, const char *pat)	Returns pointer to start of pat in str
size_t strspn(const char *str, const char *spanset)	Scan str for characters in spanset, returns the length of the span
size_t strcspn(const char *str, const char *spanset)	Scans str for character not in spanset, returns the length of the span
char *strpbrk(const char *str, const char *spanset)	Scan str for characters in spanset, returns pointer to first occurrence of a character from spanset

Storing Strings

Strings are stored in three types of structures

1. Fixed Length structure
2. Variable Length structure with fixed maximums
3. Linked structures
4. Fixed length Storage, record oriented: In this structure each line of text is viewed as a record where all records have the same length or have the same number of characters

Example: Assuming our record has a maximum of 12 characters per record the strings are stored as follows

0	$\longrightarrow \mathrm{D}$	A	T	A											
1	$\longrightarrow \mathrm{S}$	T	R	U	C	T	U	R	E	S					
2	$\longrightarrow \mathrm{A}$	N	D												
3	$\longrightarrow \mathrm{A}$	P	P	L	L	I	C	A	T	I	O	N			
4	\longrightarrow														
5	\longrightarrow														

Advantages:

- Ease of accessing data from any given record
- Ease of updating data in any given record (provided the length of the new data does not exceed the record length

Disadvantages

- Time is wasted reading an entire record if most of the storage consist of in essential blank spaces
- Certain records may require more space or data than available
- When the correction consist of more or fewer characters than original text, updation requires the entire record to be changed(the disadvantage can be resolved by using array of pointers)

2. Variable Length storage with fixed maximum: The storage of variable length strings in memory cells wth fixed lengths can be done in two ways

- Use a marker such as (\$) to mark the end of the string
- List the length of the string as an additional field in the pointer array

Example :

3. Linked storage: Linked list is an ordered sequence of memory cells called nodes, where each node stores two information the data and also stores the address of the next node in the list. Strings may be stored in linked list as each node storing one character or a fixed number of characters and a link containing the address of the node containing the next group of characters.

Example:

(a) One character per node.

(b) Four characters per node.

String insertion function

Example: Insert string \mathbf{t} in string \mathbf{s} at position 1

$\mathrm{S}=$	A	m	o	b	i	1	e	${ }^{\prime} 00$
$\mathrm{t}=$	U	t	o	' $10 \backslash$				

Initially
Temp= \square

Strncpy(temp,s,i)

a	$' \backslash 0 \backslash$

Strcat(temp,t)

a	U	t	o	$` \backslash 0 \backslash$

Strcat(temp,(s+i))

a	u	T	o	m	o	b	i	L	e	' $10 \backslash$

Consider two string str1 and str2 . insert srting str2 into str1 at position i.
\# include<string.h>
\# define max_size 100
Char str1[max_size];
Char str2 [max_size];
Void strins(char *s, char *t, int i)
\{
Char str[max_size], *temp= string;
If ($\mathrm{i}<0 \& \& \mathrm{i}>\operatorname{strlen}(\mathrm{s})$
\{
Printf(" position is out of bound");
Exit(0);
\}
else
if $(\operatorname{strlen}(\mathrm{t}))$
\{

```
    strncpy(temp,s,i);
    strcat(temp,t);
    strcat(temp,(s+i));
    strcpy(s,temp);
} }
```

Pattern matching: Consider two strings str and pat where pat is a pattern to be searched for in stri. The easiest way to find if the pat is in str is by using the built in function strstr.

Example: If we have a declaration as follows
Char pat[max_size], str[max_size], *t;
The pattern matching can be carried out as follows
if($(\mathrm{t}=\operatorname{strstr}(\mathrm{str}$, pat $))$
Printf("The pattern found in the string is $\% \mathrm{~s}$ ",t);
Else
Printf(" The pattern was not found");
Since there are different methods to find pattern matching discussed below are two functions that finds pattern matching in a more efficient way.

The easiest and the least efficient method in pattern matching is sequential search. The computing time is of O (n.m).

Exhaustive patter matching is improved in nfind function by

- Quitting when strlen(pat) is greater than the number of remaining characters
- Compare the first and last character if pat and string before we check the remaining characters

```
int nfind(char *string,char *pat)
{
Int i,j,start=0;
int lasts=strlen(string)-1;
int lastp=strlen(pat)-1;
int endmatch= lastp
for(i=0;endmatch<=lasts;endmatch++,strt++)
{
    If(string[endmatch] == pat[lastp])
    {
        j=0;i= start;
        while(j<lastp && string[i]== pat[j])
            {
                i++;
                j++);
            }
        }
    if(j==lastp)
    return start;
}
return -1
```

\}
Simulation of nfind

Pattern

No Match

No Match

No Match

No Match

Analysis of nfind algorithm: The speed of the program is linear $O(m)$ the length of the string in the best and average case but the worst case computing is still O (n.m)

Knuth, Morris, pratt pattern matching algorithm

- Ideally we would like an algorithm that works in $\mathrm{O}(\operatorname{strlen}(\operatorname{str})+\operatorname{strlen}(p a t))$ time. This is optimal for this problem as in the worst cast it is necessary to look at all characters in the pattern and string at least once.
- We want to search the string for the pattern without moving backwards in the string. That is if a mismatch occurs we want to use the knowledge of the characters in the pattern and the position in the pattern where the mismatch occurred to determine where the search should continue. Knuth, Morris, and pratt have developed an algorithm that works in this way and has linear complexity.

The following declarations are assumed.
\#define max_string_size 100
\#define max_pat_size 100

```
int pmatch(char *string,char *pat)
{
    int i=0,j=0;
    int lens= strlen(string);
    int lenp= strlen(spat);
    while (i<lens && j<lenp)
    {
    if (string[i] == pat[j])
    {
    i++; j++; }
    else if (j==0) i++;
    else j= failure[j-1] +1;
    }
    return ((j=lenp) ? (i-lenp) : -1);
}
```

Example: For the pattern pat=abcabcacab we have the failure values calculated as below

\mathbf{j}	1	2	3	4	5	6	7	8	9	10
pat	a	b	c	a	b	c	a	c	a	b
failure	0	0	0	1	2	3	1	3	1	2

Analysis of pmatch: The time complexity of function pmatch is $\mathrm{O}(\mathrm{m})=\mathrm{O}(\operatorname{strlen}($ string $))$
Analysis of fail: The computing time of fails is $\mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{strlem}(\mathrm{pa}))$.
Therefore when the failure function is not known in advance the total computing time is $\mathrm{O}($ strlen $($ string $))+\mathrm{O}($ strlem $(\mathrm{pa}))$

MODULE-2

STACK

Stack Definition and Examples

- Stack is an ordered list in which insertions (also called push) and deletions (also called pops) are made at one end called the top.
- Given a stack $S=(a 0, \ldots$. , an- 1$)$, we say that $a 0$ is the bottom element, an- 1 is the top element, and ai is on top of element ai- $1,0<\mathrm{i}<\mathrm{n}$.
- Since the last element inserted into a stack is the first element removed, a stack is also known as a Last-In-First-Out (LIFO) list.

Illustration of stack operations

Fig: Illustration of the push and pop operations

Implementation of stack

Stack is implemented by using a one-dimensional array, stack [MAX_STACK_SIZE], where MAX is the maximum number of entries.

- The first, or bottom, element of the stack is stored in stack [0], the second in stack [1], and the ith in stack [i-1].
- Variable top points to the top element in the stack.
- $T o p=-1$ to denote an empty stack.

ADTStack is

objects: a finite ordered list with zero or more elements.
functions: for all stack \in Stack, item \in element, maxStackSize \in positive integer

| Stack CreateS(maxStackSize) $::=$ | create an empty stack whose maximum size is
 maxStackSize |
| :--- | :--- | :--- | :--- |
| BooleanIsFull(stack, maxStackSize)
 $:=$ | if (number of elements in stack == maxStackSize)
 returnTRUE
 else returnFALSE |
| StackPush(stack, item) $::=$ | if (IsFull(stack)) stackFull
 else insert item into top of stack and return $\quad: \quad$ if
 BooleanIsEmpty(stack)
 CreateS(maxStackSize))
 returnTRUE
 else returnFALSE |
| ElementPop(stack) $::=$ | if (IsEmpty(stack)) return
 else remove and return the element at the top of the stack. |

Array Implementation of a stack of integers

```
}#include<stdio.h>
#define MAX 10
int top= -1,stack[MAX];
void push(int item)
{
    if (top==MAX-1)
    printf("Stack Overflow\n");
    else
    stack[++top]=item;
}
int pop()
{
    int itemdel;
    if (top==-1)
    return 0;
    else
    {
        itemdel=stack[top--];
        return itemdel;
    }
}
```

void display()
\{
int i;
if(top==-1)
printf("Stack Empty\n");
else
\{
printf("Elements Are:\n");
for(i=top;i>=0;i--)

```
        printf("%d\n",stack[i]);
    }
}
void main()
{
        int ch,item,num,itemdel;
        while(1)
    {
        printf("\nEnter the Choice\n1.Push\n2.Pop\n3.Display\n4.Exit\n");
        scanf("%d",&ch);
        switch(ch)
        {
        case 1: printf("Enter item to be inserted\n");
                    scanf("%d",&item);
                push(item);
                break;
            case 2: itemdel=pop();
            if(itemdel)
            printf("\n Deleted Item is:%d\n",itemdel);
            else
            printf("Stack Underflow\n");
            break;
        case 3: display();
            break;
        case 4: exit(0);
    }
}
```


2.1.3 Stacks Using Dynamic Arrays

If we do not know the maximum size of the stack at compile time, space can be allocated for the elements dynamically at run time and the size of the array can be increases as needed.

Creation of stack: Here the capacity of the stack is taken as 1 . The value of the capacity can be altered specific to the application

StackCreateS() ::=

```
int *stack
Stack=(int*)malloc(stack, sizeof(int));
int capacity = 1;
int top = -1;
```

BooleanIsEmpty(Stack) : $:=$ top <0;
BooleanIsFull(Stack) ::= top $>=$ capacity-1;

The function push remains the same except that MAX_STACK_SIZE is replaced with capacity

```
void push(element item)
{
    if (top >=capacity-1)
    stackFull();
    stack[++top] = item;
}
```

The code for the pop function remains unchanged element

```
pop()
{/* delete and return the top element from the stack */
    if (top == -1)
    return stackEmpty(); /* returns an error key */
    return stack[top--];
}
```

Stackfull with Array doubling:The code for stackFull is changed. The new code for stackFull attempts to increase the capacity of the array stack so that we can add an additional element to the stack. In array doubling, the capacity of the array is doubled whenever it becomes necessary to increase the capacity of an array.

```
void stackFull()
{
    stack=(int*)realloc(stack, 2* capacity * sizeof(int))
    capacity =capacity * 2;
}
```


Analysis

- In the worst case, the realloc function needs to allocate $2 *$ capacity *sizeof (*stack) bytes of memory and copy capacity*sizeof (*stack)) bytes of memory from the old array into the new one.
- Under the assumptions that memory may be allocated in $\mathrm{O}(1)$ time and that a stack element can be copied in $\mathrm{O}(1)$ time, the time required by array doubling is O (capacity). The total time spent in array doubling is of $\mathrm{O}(\mathrm{n})$ where n is the total number of push operations.
- Hence even with the time spent on array doubling in the total time of push over all n pushes in $\mathrm{O}(\mathrm{n})$. This conclusion is valid even the stack array is resized by a factor $\mathrm{c}>1$.

Application of stack

$>$ Conversion of Expression
$>$ Evaluation of expression
> Recursion

Infix, postfix(Suffix) and Prefix(polish)

- Expression is a collection of operands and operators
- An expression can be represented in three different ways.
$>$ Infix expression: operators are in between the two operands . Example a+b
$>$ Prefix expression: operators are present before the operands. Example +ab
$>$ Postfix expression: operators are present after the operands. Example ab+
- The prefixes "pre", "post", and "in" refer to the relative position of the operator with respect to the two operands.

To convert an expression from infix to prefix or postfix we follow the rules of precedence.

- Precedence : The order in which different operators are evaluated in an expression is called precendence
- Associativity: The order in which operators of same precedence are evaluated in an expression is called Associativity.

The operators are listed in the order of higher precedence down to lower precedence

Operator	Associativity
,--++	left-to-right
Unary operators $\sim,!,-,+, \&,{ }^{*}$, sizeof	Right to left
$*, /, \%$	left-to-right
,+-	left-to-right

Converting an expression from infix to postfix

The operands in the infix and the postfix expression are in the same order. With respect to operators, precedence of operators plays an important role in converting an infix expression to postfix expression. We make use of the stack to insert the operators according to their precedence.

The following operations are performed to convert an infix expression to postfix.

- Scan the symbol character by character
- If the symbol is an operand place it in the postfix string
- If the symbol is an opening parenthesis push it on to the stack
- If the symbol is a closing parenthesis pop the contents of the stack until we see an opening parenthesis and place it in the postfix string. The opening parenthesis and the closing parenthesis is not placed in the postfix string.
- If the symbol is an operator and if the precedence of the input symbol is more than the precedence of the symbol on top of the stack, then the operator is pushed on to the stack. If the precedence of the input symbol is lesser than the symbol on top of the stack we pop each such operators and place it in the postfix string

Algorithm Polish(\mathbf{Q}, \mathbf{P})

Suppose Q is an arithmetic expression written in infix notation. This algorithm finds the equivalent Postfix expression P.

1. Push '(' on to STACK to identify the end of the stack
2. Scan Q from Left to right and repeat steps 3 to 6 for each character of Q until the end of the string
3. If an operand is encountered add it to P
4. If a left parenthesis is encountered ,push it to onto STACK.
5. If an operator \otimes is encountered then
a. Repeatedly pop each operator that has equal or higher precedence and add to P .
b. Add \otimes to Stack
6. If a right Parenthesis is encountered, then
a. Repeatedly pop from stack and add to P each operator on top of stack until until a left parenthesis is encountered.
b. Remove the left Paranthesis.[do not add left parenthesis to stack] [End of If Structure.]
[End of Step 2 loop]
7. Repeatedly pop stack until it is empty and add to P
8. Exit

Function to convert an infix expression to postfix

Assume the stack and the top is declared globally char s[25];
int top=-1;

```
int precd(char op)
```

\{
int r ;
switch(op)
\{
Case '^':
Case ' $\$$ ' r=3; break;
case '*':
case '/': r=2;break;
case '+':
case '-': r=1;break;
case '(': r=0;break;
case '\#': r=-1;break;
\}
return(r);
\}
void infix_postfix(char infix[],char postfix[])
\{
int $\mathrm{i}, \mathrm{p}=0$;

```
    char symbol,item;
    push('#');
    for (i=0;infix[i]!='\0';i++)
    {
        symbol=infix[i];
        switch(symbol)
    {
        case '(': push(symbol);
        break;
        case ')':item=pop();
        while(item!='(')
        {
        postfix[p++]=item;
        item=pop();
        }
        break;
        case '+':
        case '-':
        case '*':
        case '/':
        case '%':while(precd(s[top])>=precd(symbol))
        {
            item=pop();
            postfix[p++]=item;
        }
        push(symbol);
        break;
        case '^': while(precd(s[top])>precd(symbol))
        {
        item=pop();
        postfix[p++]=item;
        }
        push(symbol);
        break;
        default: postfix[p++]=symbol;
        break;
    }
}
    while(top>0)
    {
        item=pop();
        postfix[p++]=item;
    }
    postfix[p]='\0';
```

\}

Example: Translation of the infix string $a^{*}(b+c) * d$ to postfix

Infix Token	Stack			Postfix	
	$[\mathbf{0}]$	$[\mathbf{1]}$	$[2]$	$[3]$	
a	$\#$				a
$*$	$\#$	$*$			a
$($	$\#$	$*$	$($		a
b	$\#$	$*$	$($		ab
+	$\#$	$*$	$($	+	ab
c	$\#$	$*$	$($	+	abc
)	$\#$	$*$			$\mathrm{abc}+$
$*$	$\#$	$*$			$\mathrm{abc}+^{*}$
d	$\#$	$*$			$\mathrm{abc}+^{*} \mathrm{~d}$
$\operatorname{Eos}(\backslash 0)$	$\#$				$\mathrm{abc}+^{*} \mathrm{~d}^{*}$

Analysis: Let n be length of the infix string. $\Theta(\mathrm{n})$ time is spent extracting tokens. There are two while loop where the total time spent is $\Theta(n)$ since the number of tokens that get stacked and unstacked is linear in n. So the complexity of the function is $\Theta(n)$

Evaluating a postfix expression

Each operator in a postfix string refers to the previous two operands in the string. If we are parsing a string, each time we read operands we push it to the stack and when we read a operator, its operands will be the two topmost elements in the stack. We can then pop these two operands and perform the indicated operation and push the result back to the stack so that it can be used by the next operator.

Example: Evaluation of postfix string $623+-382 /+* 2 \$ 3+$

Token	Stack content				Operand1	Operand2	Result
	$[0]$	$[1]$	$[2]$	$[3]$			
6	6						
2	6	2					
3	6	2	3				
+	6	5			2	3	5
-	1				6	5	1
3	1	3					
8	1	3	8				
2	1	3	8	2			
$/$	1	3	4		8	2	4
+	1	7			3	4	7
$*$	7				1	7	7
2	7	2					
$\$$	49				7	2	49
3	49	3					
+	52				49	3	52

The following function evaluates a postfix expression using a stack and a stack of float elements is declared globally
float $\mathrm{s}[25]$;
int top;

```
float Evaluate(char *postfix)
{
    int i=0;
    float res=0,op1,op2;
    char symbol;
    while(postfix[i]!=`\0')
    {
        symbol=postfix[i];
        if isdigit(symbol)
    {
        push(symbol-`0');
    }
    else
    {
        op2=pop();
        op1=pop();
        res=operation(symbol,op1,op2);
        push(res);
    }
    }
    res=pop();
    return(res);
}
```

float operation(char op, float op1,float op2)
\{
float res;
switch(op)
\{
case ' + ': res= op1+op2;
case '-': res= op1-op2;
case '*': res= op1*op2;
case '/': res= op1/op2;
case ' \wedge ': res= pow(op1,op2);
\}
return (res);
\}

Limitations of the program

$>$ It does not check if the postfix expression is valid or not. If we input erroneous expression it returns wrong result
$>$ We cannot enter negative numbers, as the symbol to indicate negation will be misinterpreted as subtraction operation

Analysis: Let n be length of the postfix string then the complexity of the function is $\Theta(n)$

Algorithm PostfixEval(\mathbf{P})

This algorithm finds the VALUE of an arithmetic expression P written in postfix notation

1. Scan P from Left to righ
2. Repeats steps 3 and 4 until we reach the end of P
3. If an operand is encountered put it on stack
4. If an operator \otimes is encountered then:
a) remove two top elements of STACK, where A is the top element and B is the next top- element
b) Evaluate $\mathrm{B} \otimes \mathrm{A}$
c) Place the result of (4) in STACK.
[End of If structure]
[End of step 2 Loop]
5. Set VALUE equal to the top element of STACK.
6. EXit

Recursion: Recursion is the process of defining an object in terms of a simpler case of itself.
Suppose p is a function containing either a call statement to itself (direct recursion) or a call statement to a second function that may eventually result in a call statement back to the original function P (indirect recursion). Then the function P is called a recursive function.

A recursive function must have the following two properties.

- There must be a certain argument called the base value for which the function will not call itself.
- Each time the function refers to itself the argument of the function must be closer to the base value.

Factorial function: The factorial of a number n is got by finding the product of all the numberform 1 to n . ie $1 * 2 * 3 \ldots *$ n.. It is represented as n !

Example $4!=4 * 3 * 2 * 1=24$

$$
5!=5 * 4 * 3 * 2 * 1=120
$$

$$
0!=1
$$

From a close observation it can be observed that $5!=5 * 4!$. Therefore $n!=n *(n-1)$!
Accordingly the factorial function can be defined as

Factorial function definition

a) If $\mathrm{n}=0$, then $\mathrm{n}!=1$
b) If $\mathrm{n}>0$, then $\mathrm{n}!=\mathrm{n} *(\mathrm{n}-1)$!

- The definition is recursive since the function refers to itself for all value of $n>0$.
- The value of n ! is explicitly given as 1 when the value of $n=0$ which can be taken as the base value.
- This can be implemented by the code
factorial(int n)
\{
$\mathrm{f}=1$;
for $(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
$\mathrm{f}=\mathrm{f}$ *i;
return(f)
\}
This is the iterative implementation of the factorial function

The factorial function can be implemented as a recursive function.

For example

factorial (5)=5*factorial(4)
factorial (4)=4*factorial(3)
factorial (3) $=3 *$ factorial (2)
factorial(2) $=2 *$ factorial(1)

```
factorial(int n)
{
    if (n==0 )
    return(1);
    else
    return(n*factorial(n-1))
}
```


Fibonacci numbers in C

- Fibonacci sequence is a sequence of integers. $0112358 \ldots .$. fib $(0)=0$ and fib(1)=1 then each element in this sequence is the sum of the previous two numbers.
- $\quad \mathrm{fib}(\mathrm{n})=\mathrm{n}$ if $\mathrm{n}=0$ or if $\mathrm{n}=1$
- $\mathrm{fib}(\mathrm{n})=\mathrm{fib}(\mathrm{n}-2)+\mathrm{fib}(\mathrm{n}-1)$ if $\mathrm{n}>=2$

Recursive function to generate the nth Fibonacci number

int fib(int n)
\{
if ($\mathrm{n}<=1$)
return(n);
else
return(fibo(n-1)+fibo(n-2));
\}

Example:

Fibo(4) $=$ fibo(3) $+\mathrm{fibo}(2)$
$=$ fibo(2) $+\mathrm{fibo}(1)+\mathrm{fibo}(2)$
$=f i b o(1)+f i b o(0)+f i b o(1)+$ fibo(2)
$=1+$ fibo(0) $+\mathrm{fibo}(1)+\mathrm{fibo}(2)$
$=1+0+$ fibo(1) + fibo(2)

$$
\begin{aligned}
& =1+0+1+\text { fibo }(2) \\
& =2+\text { fibo(1)+ fibo }(0) \\
& =2+1+\text { fibo }(0) \\
& =2+1+0=3
\end{aligned}
$$

GCD of two numbers: The function accepts two numbers as input and returns the gcd of the two numbers

```
gcd(int m, int n)
```

\{
if ($\mathrm{n}==0$)
return m;
retrun(gcd(n,m\%n))
\}

Example:

$\operatorname{gcd}(2,0)=2$
$\operatorname{gcd}(0,2)=\operatorname{gcd}(2,0)=2$
$\operatorname{gcd}(4,2)=\operatorname{gcd}(2,0)=2$
$\operatorname{gcd}(7,3)=\operatorname{gcd}(3,1)=\operatorname{gcd}(1,0)=1$

Binary search in C

int binsearch(int *a, int key, int low, int high)
\{
If (low>high)
return(-1);
mid=(low+high) $/ 2$;
if (key==a[mid])
return(mid)
else
if (key>a[mid])
return(binsearch(a,key,mid+1,high));
else
return(binsearch(a,key,low,mid-1));
\}

The Tower of Hanoi problem :

- We have to move n disks from peg A to peg C using peg B as auxiliary disk.
- The disks are placed in such a way that the larger disks are always below a smaller disk.
- Only the top disk on any peg can be moved to any other peg.
- Larger disk should never rest on a smaller disk.

A recursive solution to the tower of Hanoi problem is given as follows

- To move n disks from A to c using B as auxiliary
$>$ If $\mathrm{n}==1$ move the single disk from A to C and stop
\rightarrow Move the top $\mathrm{n}-1$ disks form A to B using C as auxiliary
$>$ Move the $\mathrm{n}^{\text {th }}$ disk from A to C
$>$ Move $\mathrm{n}-1$ disk from B to C using A as auxiliary

```
Write a program to solve the Tower of Hanoi problem using a recursive function
void tower(int n,char source,char temp,char dest)
{
        if(n==1)
        printf("Move disc 1 from %c to %c\n",source,dest);
        count++;
        return;
    }
    tower(n-1,source,dest,temp);
    printf("Move disc %d from %c to %c\n",n,source,dest);
    count++;
    tower(n-1,temp,source,dest);
}
Void main()
{
    int n,count;
    printf("Enter the number of discs\n");
    scanf("%d",&n);
    tower(n,'A','B','C');
    printf("The number of moves=%d\n",count);
}
```


Example: $\mathbf{n}=\mathbf{3}$ disks

Tracing of function with $n=3$ disks

The moves for $\mathrm{n}=3$ disk is summarized below.
Move 1 from A to C
Move 2 from A to B
Move 1 from C to B
Move 3 from A to C
Move 1 from B to A
Move 2 from B to C
Move 1 from A to C
Note: Ideal number of moves to solve Tower of Hanoi is given as $2^{n}-1$ where n is the total number of disks

Problem solved with $\mathbf{n}=\mathbf{3}$ disks

Ackermann Function

The Ackermann function is a function with two arguments each of which can be assigned any non negative integer $0,1,2$. \qquad This function finds its application in mathematical logic.
This function is defined as follows
a) If $m=0$ then $A(m, n)=n+1$
b) If $\mathrm{m}!=0$ but $\mathrm{n}=0$ then $\mathrm{A}(\mathrm{m}, \mathrm{n})=\mathrm{A}(\mathrm{m}-1,1)$
c) If $m!=0$ and $n!=0$ then $A(m, n)=A(m-1, A(m, n-1))$

The function is given as follows int A (int m,int n)
\{

$$
\text { if }(\mathrm{m}==0)
$$

return(n+1);

$$
\text { if }((\mathrm{m}!=0) \& \&(\mathrm{n}==0))
$$

return(A(m-1,1));
if $((\mathrm{m}!=0) \& \&(\mathrm{n}!=0))$
return(A(m-1, A(m,n-1)));
\}
Example1:

$\mathrm{A}(1,2)$	$=\mathrm{A}(0, \mathrm{~A}(1,1))$
	$=\mathrm{A}(0, \mathrm{~A}(0, \mathrm{~A}(1,0)))$
	$=\mathrm{A}(0, \mathrm{~A}(0, \mathrm{~A}(0,1))$
	$=\mathrm{A}(0, \mathrm{~A}(0,2)$
	$=\mathrm{A}(0,3)$
	4

Example 2:

$\mathrm{A}(1,3)$	$=\mathrm{A}(0, \mathrm{~A}(1,2))$
	$=\mathrm{A}(0, \mathrm{~A}(0, \mathrm{~A}(1,1)))$
	$=\mathrm{A}(0, \mathrm{~A}(0, \mathrm{~A}(0, \mathrm{~A}(1,0))))$
	$=\mathrm{A}(0, \mathrm{~A}(0, \mathrm{~A}(0, \mathrm{~A}(0,1))))$
	$=\mathrm{A}(0, \mathrm{~A}(0, \mathrm{~A}(0,2)$
	$=\mathrm{A}(0, \mathrm{~A}(0,3)$
	$=\mathrm{A}(0,4)$
	5

Disadvantages of using Recursion

- Non recursive version of the program is more efficient when compared to recursive version in terms of time and space
- Non recursive versions do not have the overhead of entering and exiting from the block.
- In recursive program the local variables have to be maintained using a stack, which can be avoided in an iterative(non recursive) version

Advantage of using Recursion

- Recursive program is the most natural and logical way of solving some of the problems
- If a stack can be eliminated in a recursive program without having any local variables then they can be as fast its non recursive version,

Difference between iterative and recursive functions

Iterative	Recursive
Implemented using looping statements	Implemented using recursive calls to functions
Executes faster	Takes more time to execute
Memory utilization is Less	Memory utilization is more
Lines of code are more	Lines of code are lesser
Does not require stack	Implementation requires stack

Queues:

A queue is an ordered list in which insertions and deletions take place at different ends. The end at which new elements are added is called the rear, and that from which old elements are deleted is called the front. Queues are also known as First-In-First-Out (FIFO) lists.

The ADT specification of the queue

objects: a finite ordered list with zero or more elements.
functions: for all queue \in Queue, item \in element, maxQueueSize \in positive integer

Queue CreateQ(maxQueueSize) $::=$	create an empty queue whose maximum size is maxQueueSize
BooleanIsFullQ(queue, maxQueueSize) $::=$	if (number of elements in queue == maxQueueSize) returnTRUE else returnFALSE
QueueAddQ(queue, item) $::=$	if (IsFullQ(queue)) queueFull else insert item at rear of queue and return queue
BooleanIsEmptyQ(queue) $::=$	if (queue $==$ CreateQ(maxQueueSize)) returnTRUE else return FALSE
Element DeleteQ(queue) $::=$	if (IsEmptyQ(queue)) return else remove and return the item at front of queue.

Example

Initially $f=-1 \quad r=-1$ queue empty

Element						
index	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$

$\mathrm{f}=-1$
Insert 3

Element	3					
index	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
	, r					

$\mathrm{f}=-1$
Insert 5

Element	3	5				
index	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
		r				

$\mathrm{f}=-1$
Insert 7

Element	3	5	7			
Index	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
			r			

delete

Element		5	7			
Index	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
	F		r			

Deleted item =3

C implementation of queues for an integer array: A queue can be represented by using an array to hold the elements of the array and to use two variables to hold the position of the first and lastelement of the queue.
\#define size 10
int q[size];
int front=-1 ,rear=-1;

- The condition where the queue is empty is called queue underflow.
- When we define the size of the array, we cannot insert elements more than the size of the array, this condition where the queue is full is called as queue overflow.

Insert operation

The insert operation first checks for queue overflow. If the queue is not full it inserts one element into the queue at the rear.

```
Void insert(int item)
{
    If rear==size-1)
    Printf("queue overflow");
else
{
    rear++;
    q[rear]=item;
}
}
```

Delete operation: Delete operation checks for queue underflow condition and if the queue is not empty it will remove the element at the front.

```
int delete()
{
    int itemdel;
    if (front ==rear)
    {
        Printf("queue underflow");
        return(0);
    }
    else
    {
        front++
        itemdel=q[front];
        return(itemdel);
    }
}
```

Display operation: The display operation will display the elements of the queue if the queue is not empty.

```
void display(s)
{
    if (front==rear)
    printf("queue empty");
    else
        {
        for(i=front+1;i<=rear;i++)
        printf("%d",q[i]);
    }
}
```

Disadvantage of linear queue: The following example illustrates the disadvantage of linear queue

\mathbf{f}	\mathbf{r}	$\mathbf{Q}[\mathbf{0]}$	$\mathbf{Q}[\mathbf{1]}$	$\mathbf{Q}[2]$	$\mathbf{Q}[3]$	$\mathbf{Q}[4]$	Comment
-	-1						Queue is empty
-1	0	2					Insert 2
-1	1	2	3				Insert 3
-1	2	2	3	4			Insert 4
-1	3	2	3	4	5		Insert 5
-1	4	2	3	4	5	6	Insert 6
0	4		3	4	5	6	Delete- item deleted=2
1	4			4	5	6	Delete- item deleted=3
							Insert 3(disadvantage) Queue full. Element cannot be inserted since rear size-1

Even if the queue is empty since the value of rear= size-1 elements cannot be inserted into the queue.
This is the disadvantage of linear queue.
Circular Queue: In a circular queue the queue is arranged in a circular fashion. It is a more efficient representation of queue.

Example:

Front=0 rear=-1

Fig: Implementation of circular queue for an array of integers

Modification in code to implement circular queue

- Initial value of front and rear=0
- To advance the pointer from size- 1 to 0 the code rear++ is modified to rear=(rear +1)\%size and the code front++ is modified to front=(front +1)\%size
- Initially when front $=0$ rear=0 i.e when front $==$ rear the queue is empty now after 6 insertions are made again fron $=0$ and rear $=0$ that is the queue is full. So, we cannot distinguish between an empty and a full queue.
- To avoid the resulting confusion, the value of the rear is incremented before we check for the condition front $==$ rear for queue overflow.
\#define MAX_QUEUE_SIZE 6
int q[size];
int front=0 ,rear=0;
Insert operation: The insert operation first checks for queue overflow. If the queue is not full it inserts one element into the queue at the rear.

```
void addq(element item)
{
    if (front == (rear+1) % MAX_QUEUE_SIZE )
    printf("Queue full");
    else
    {
        rear= (rear+1) % MAX_QUEUE_SIZE
        queue[rear] = item;
    }
}
```

Delete operation: Delete operation checks for queue underflow condition and if the queue is not empty it will remove the element at the front.

```
element deleteq()
{
    element item;
    if (front == rear)
    return queueEmpty();
    front = (front+1) % MAX_QUEUE_SIZE;
    return queue[front];
}
```


Circular Queues Using Dynamically Allocated Arrays

- To add an element to a full queue, we must first increase the size of this array using a function such as realloc.
- As with dynamically allocated stacks, we use array doubling. However, it isn't sufficient to simply double array size using realloc.
- Consider the full queue. This figure shows a queue with seven elements in an array whose capacity is 8 . To visualize array doubling when a circular queue is used, the array is flattened out as shown in the array of Figure (b).

front $=5$, rear $=4$
(b) Flattened view of circular full queue

Figure (c) shows the array after array doubling by realloc.

To get a proper circular queue configuration, The number of elements copied can be limited to capacity - 1 by customizing the array doubling code so as to obtain the configuration as shown below.

$$
\text { front }=15, \text { rear }=6
$$

This configuration may be obtained as follows:

1. Create a new array newQueue of twice the capacity.
2. Copy the second segment (i.e., the elements queue [front +1] through queue [capacity 1]) to positions in newQueuebeginning at 0 .
3. Copy the first segment (i.e., the elements queue [0] through queue [rear]) to positions in newQueue beginning at capacity-front-1.
```
Function to add to a circular queue has no change
void addq(int item)
{
    rear = (rear+1) % capacity;
    if (front == (rear+1) % capacity)
    queueFull(); /* double capacity */
    else
    {
        rear = (rear+1) % capacity;
        queue[rear] = item;
    }
}
```

```
Function to double queue capacity
void queueFull()
{
    int* newQueue;
    newQueue=(int*)malloc( 2 * capacity * sizeof(int));
                                    /* copy from queue to newQueue */
    int start = (front+1) % capacity;
    if (start < 2)
    copy(queue+start, queue+start+capacity-1, newQueue);
    else
    { /* queue wraps around */
    copy(queue+start, queue+capacity, newQueue);
    copy(queue, queue+rear+1, newQueue+capacity-start);
    }
    /* switch to newQueue */
    front=2* capacity - 1;
    rear = capacity - 2;
    capacity *= 2;
    free(queue);
    queue = newQueue;
}
```

The function $\operatorname{copy}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ copies elements from locations a through $\mathrm{b}-1$ to locations beginning at c
Deques: A deque (pronounced either as deck or dequeue) is a linear list in which elements can be added or removed at either end but not in the middle. The term deque is a contraction of the name double ended queue.

Representation: It is represented as a circular array deque with pointers left and right, which point to the two ends of the queue. It is assumed that the elements extend from the left end to the right end in the array. The term circular comes from the fact that DEQUE[0] comes after DEQUE[n-1] in the array.

Example1:

Left=2 Right=4			A	B	C		
	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$

Example2:

Left=5 Right $=1$	A	B				D	E
	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$

There are two types of deque:

- Input restricted:- insertion is allowed only at one end, deletion is allowed at both ends.
- Output restricted: deletion is allowed only at one end, insertion is allowed at both ends

Priority queue: A priority queue is a collection of elements such that each element has been assigned a priority such that the order in which the elements are deleted and processed comes from the following rules.

1. An element of higher priority is processed before any element of lower priority.
2. Two elements with the same priority are processed according to the order in which they were added to the queue.

Example: Time sharing system: programs of higher priority are processed first and programs with the same priority form a standard queue.

Representation using multiple queue: Use a separate queue for each level of priority. Each queue will appear in its own circular array and must have its own pair of pointers, front and rear. If each queue is allocated the same amount of space, a two dimensional array can be used instead of the linear arrays.

Example : Consider the queue given below with the jobs and its priorities and its representation. A job with priority 1 is considered to have the highest priority

J1	1
J2	1
J3	2
J4	4
J5	4
J6	6

The queue is represented as a two dimensional array as shown below

	Front	rear
1	1	2
2	2	3
3		
4	4	5
5		
6	6	6

	1	2	3	4	5	6
1	J 1	J 2				
2			J 3			
3						
4				J 4	J 5	
5						
6						J6

Delete operation

Algorithm:

1. Find the smallest k such that front $[k]!=r e a r[k]$ ie Find the first non empty queue
2. Delete the process at the front of the queue
3. Exit

Insert operation

Algorithm: this algorithm adds an ITEM with priority number P to a priority queue maintained by a two dimensional array

1. Inset ITEM as the rear element in row $\mathrm{P}-1$ of queue
2. exit

Multiple Stacks and Queues

- If there is a single stack, the starting point is top=-1 and maximum size is SIZE-1
- If there are two stacks to be represented in a single array then we use stack [0] for the bottom element of the first stack, and stack[MEMORY_SIZE - 1] for the bottom element of the second stack. The first stack grows toward stack[MEMORY_SIZE - 1] and the second grows toward stack[0]. With this representation, we can efficiently use all the available space.
- Representing more than two stacks within the same array poses problems since we no longer have an obvious point for the bottom element of each stack. Assuming that we have n stacks, we can divide the available memory into n segments. This initial division may be done in proportion to the expected sizes of the various stacks, if this is known. Otherwise, we may divide the memory into equal segments.
- Assume that i refers to the stack number of one of the n stacks.To establish this stack, we must create indices for both the bottom and top positions of this stack. The convention we use is that
- bottom [i], $0 \leq \mathrm{i}<$ MAX_STACKS, points to the position immediately to the left of the bottom element of stack i.
- top[i], $0 \leq \mathrm{i}<$ MAX_STACKS points to the top element.
- Stack i is empty if bottom[i$]=$ top $[\mathrm{i}]$.

The relevant declarations are:

```
#define MEMORY_SIZE 100 /* size of memory */
#define MAX_STACKS 10
/* max number of stacks */
/* global memory declaration */
element stack[MEMORY_SIZE];
int top[MAX_STACKS];
int bottom[MAX_STACKS];
int n; /* number of stacks entered by the user */
```

To divide the array into roughly equal segments we use the following code:

```
top[0] = bottom[0] = -1;
for (j = 1; j < n; j++)
top[j] = bottom[j] = (MEMORY_SIZE/n)*j-1;
bottom[n] = MEMORY_SIZE-1;
```

Stack i can grow from bottom[i] + 1 to bottom [i+1] before it is full. Boundary for the last stack, boundary [n] is set to MEMORY_SIZE- 1

Initial configuration of the stack is shown below m is the size of the memory

Fig: All stacks are empty and roughly divided equally

Function to add an item to the $\mathrm{i}^{\text {th }}$ stack

void push(int i, element item)
\{

$$
\text { if }(\text { top }[i]==\operatorname{bottom}[i+1])
$$

stackFull(i);

$$
\operatorname{stack}[++\operatorname{top}[\mathrm{i}]]=\text { item; }
$$

\}

Function to delete an item from the ith stack

```
element pop(int i)
{
    if (top[i] == bottom[i])
    return stackEmpty(i);
    return stack[top[i]--];
}
```


Mazing Problem

Representation: Maze is represented as a two dimensional array in which zeros represent the open paths and ones the barriers. The location in the maize can be determined by the row number and column number Figure below shows a simple maze.
entrance $\left|\begin{array}{lllllllllllllll} \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0\end{array}\right|$ exit

From each location there are eight directions of movement N, NE,E,SE,S,SW,W,NW.

If the position is on the border then there are less than eight directions. To avoid checking for border conditions the maze can be surrounded by a border of ones. Thus an $\mathrm{m} * \mathrm{p}$ maize will require an $(\mathrm{m}+2)^{*}(\mathrm{p}+2)$ array the entrance is at position [1][1] and exit is at $[\mathrm{m}][\mathrm{p}]$. The possible direction to move can be predefined in an array move as shown below where the eight possible directions are numbered from 0 to 7 . For each direction we indicate the vertical and horizontal offset.
typedef struct offset
\{
Int vert;
Int horiz;
\};
Offset move[8];
Table of moves: The array moves is initialized according to the table given below.

Name	Dir	Move[dir].vert	Move[dir].horiz
N	0	-1	0
NE	1	-1	1
E	2	0	1
SE	3	1	1
S	4	1	0
SW	5	1	-1
W	6	0	-1
NW	7	-1	-1

As we move through the maze, we may have the choice of several directions of movement. Since we do not know the best choice we save our current position and arbitrarily pick a possible move. By saving the current position we can return to it and try another path. A second two dimensional array can be maintained to keep track of the visited locations. The maze can be implemented by making use of a stack where the element is defined as follows.
typedef struct element
\{
int row;
int col;
int dir;
\};

MODULE - 3

Introduction
Linked list is a collection of zero or more nodes, where each node has some information. Given the address of the first node, any node in the list can be obtained. Every node consis of two parts one is the information part and the other is the address of the next node. The pointer of the last node contains a special value called NULL.

Schematic representation of Linked List

Advantages of array representation(static allocation)

1. Data accessing is faster: Using static allocation, we can access any data element in the array efficiently by specifying the array index for the required element. The accessing time for $\mathrm{a}[0]$ is equal to a[1000].
2. Array's are simple: Arrays are very simple to understand and it is simple to use arrays in programming.

Disadvantages of Arrays (Static allocation)

1. Array size is fixed: In static allocation method, it is required to declare in advance the amount of memory to be utilized.
2. The array elements are stored continuously so the size of the array cannot be increased.
3. Insertion and deletion of elements in an array is expensive as more time is spent shifting the data.

Advantages of linked list

1. Size is not fixed
2. Data can be stored in non contiguous blocks
3. Insertion and deletion is efficient

Disadvantage of Linked List

1. More memory is required as each node stores the address of the next node
2. Difficult to access arbitrary element

The different types of linear linked lists are :

1. Singly linked lists
2. Circular singly linked lists
3. Doubly linked lists
4. Circular doubly linked lists.

Representation of linked list: Each item in the list is called a node and contains two fields
$>$ Information field - The information field holds the actual elements in the list
$>$ Link field- The Link field contains the address of the next node in the list

To create a linked list of integers the node can be defined as follows using a self referential

 structure.Sruct Node
\{
int info;
struct Node * link;
\};
Typedef struct Node NODE;

After the node is created we have to create a new empty list as follows node * first=NULL;

- The pointer first stores the address of the first node in the list. With this information we will be able to access the location of all the other nodes in the list.
- To obtain a node we use the statement
- First=(node*) malloc(sizeof(node)
- To place the information 5 ,we can use the statement Firs->info= 5;
- As there are no other nodes in the list the link part can be made NULL as follow
- First->link=NULL

The node created is shown is represented as follows

Memory allocation and garbage collection

- The maintenance of linked lists in memory assumes the possibility of inserting new nodes into the lists and hence requires some mechanism which provides unused memory space for the new nodes. Similarly a mechanism is required which makes the deleted node available for future use.
- Together with the linked list in memory, a special list is maintained which consist of unused memory cells.
- This list which has its own pointer is called the list of available space or the free storage list or the free pool. Such a list is also called AVAIL

```
Instead of using the malloc function the following getnode() function can be used to get a new
node
NODE * getNode(void)
{
    /* provide a node for use */
NODE * new;
if (avail)
    {
        new = avail;
        avail = avail }->\mathrm{ link;
        return new;
    }
else
{
    new=( NODE *)malloc(sizeof(NODE));
    return new;
}
}
```


Instead of the free function the following retnode function can be used

```
void retNode(NODE *temp)
{/* return a node to the available list */
    temp}->\mathrm{ link = avail;
    avail = avail;
}
```


Garbage collection

- Suppose some memory space becomes reusable because a node is deleted from a list or an entire list is deleted from a program, we can make this space to be available for future use. One way is to immediately reinsert the space into the free storage list.
- This is done when a list is implemented by linear arrays. But this method may be too time consuming for the operating system of the computer. So an alternate method is devised.
- The operating system of a computer may periodically collect all the deleted space on to the free storage list this technique si called garbage collection

Garbage collection takes place into two steps

- Runs through all the list an marks those cells which are currently in use
- Then the computer runs through the memory collecting all unmarked space on to the free storage list

Garbage collection takes place when

- The space is minimal or
- No space is left or
- when the CPU is idle and has time to do collection.

Garbage collection is invisible to the user.

- Overflow: When new data has to be inserted in to a data structure and if there is no available space in the free storage list, then we call this condition overflow
- Underflow: Refers to a condition when one tries to delete data from a data structure that is empty

Operations on Linked List

Insertion into a linked list
It is assumed that the following declaration is made globally
Sruct Node
\{
int info;
struct Node * link;
\};
typedef struct Node NODE;

Function to insert a node in the front of a linked list

```
Void insert_front( int item)
{
NODE * temp;
temp=( NODE *)malloc(sizeof(NODE);
    if(temp==NULL)
    {
    printf("No space available\n");
exit(0);
    }
else
    {
            temp->info=item;
            temp->link=first;
            first=temp;
        }
}
```


Function to insert a node in the end of a linked list

```
void insert_rear(int item)
{
    NODE *temp, *cur;
    temp=(NODE *)malloc(sizeof(NODE));
    if(temp==NULL)
    {
    printf("No space available\n");
exit(0);
    }
    temp->info=item;
```

```
temp->link=NULL;
if (first==NULL)
    first=temp;
else
    {
        cur=first
    while(cur->link!=NULL)
    cur=cur->link;
    cur->link=temp
    }
}
```

Inserting an element after a node with location loc
Void insert(int item, NODE* loc)
\{
NODE * temp, *next;
temp=(NODE *)malloc(sizeof(NODE);
if(temp==NULL)
\{
printf("No space availableln");
\}
else
\{
temp->info=item;
next=loc->link;
loc->link=temp;
Temp->link=next;
\}

Deletion from a linked list

Function to delete a NODE in the front of a linked list

void delete-front()
\{
NODE * cur;
If (first==NULL)
Printf("List empty");
else
\{
Cur=first
first=first->link
free(cur);
\}
\}

```
Function to delete a NODE in the end of a linked list
Void delete-end()
{
NODE * cur,*prev;
If (first==NULL)
    Printf("List empty");
else
        if (first->link==NULL)
        {
        Cur=first
        First=NULL
        Free(cur);
        }
    else
        {
        Prev=NULL;
        Cur=first;
        While(cur->link!=NULL)
        {
        Prev=cur;
        Cur=cur-.link;
            }
            Prev->link=NULL
            Free(cur);
        }
}
```

Delete the nodes from a linked list pointed by first whose information part is specified is item

```
NODE * delete_item(NODE *first, int item)
{
    NODE *prev, *cur;
    If (first==NULL)
{
printf("list is empty");
return(first);
}
if(first->info==item)
{
cur=first
first=first->link
free(cur);
return(first);
}
prev=NULL;
```

```
cur=first;
while (cur!=NULL)
{
If (cur->info==item)
    {
    prev->link=cur->link;
    free(cur);
    return(first);
    }
else
    {
    prev=cur;
    cur=cur->link;
    }
}
Printf("node with item not found")
return(first);
}
```

Delete the NODE present at location loc, the NODE that precedes is present at location locp. If there is only one NODE then locp=NULL

```
Void delete(NODE *loc, NODE*locp)
{ NODE * next;
If(locp==NULL)
    {
        Free(Loc)
    }
Else
    {
    Next=loc->link;
    Locp->link=next;
    Free(Loc)
}
}
```


3.4.3 Traversal of Linked List

Function to display the contents of the list
Void display(Node * first)
\{ NODE *cur;
if (first==NULL)
printf("list is empty);
else

```
    {
    cur=first
    while(cur!=NULL)
    {
    Printf("%d \t", cur->info);
    cur=cur->link;
    }
```

\}

Function to find the length of the the list

```
int Length(Node * first)
```

\{
NODE *cur;
int count=0
if (first==NULL)
\{
printf("list is empty);
return(0)
\}
cur=first
while(cur!=NULL)
\{
count++
cur=cur->link;
\}
return(count)
\}

SEARCHING A LINKED LIST

Search an item from an unsorted list
Void search(int item,struct NODE* first)
\{
Struct NODE *cur;
If (first==NULL) printf("list empty");
else
\{
cur=first;
while(cur!=NULL)
\{

```
                If(item==cur->info)
            {
            printf("search successful")
```

```
            retrun;
            }
    cur =cur-> link;
    }
        }
    Printf("search unsuccessfull");
}
```


Search an item from a sorted list

```
Void search(int item,struct NODE* first)
{
Struct NODE *cur;
If (first==NULL)
    printf("list empty");
else
    {
    cur=first;
    while(cur!=NULL&& item>=cur->nfo)
    {
        If(item==cur->info)
        {
        printf("search successful")
        retrun;
        }
            cur =cur-> link;
    }
    }
    Printf("search unsuccessfull");
}
```


Additional Operations on a linked list

Function to concatenate two linked list pointed by list1 and list2
NODE* concat(Struct NODE * list1, stuct NODE *list2)
\{
struct NODE* temp;
if(list1==NULL)
return(list2)
if(list2==NULL)
return(list1);
temp=list1
while(temp->link!=NULL)
temp=temp->link;
temp->link=list2
return(list1)
\}

Function to reverse a linked list

NODE* reverse(struct NODE *first)
\{
NODE *prev,*cur,*next;
cur=first;
prev=NULL;
while(cur!=NULL)
\{
next= cur->link
cur->link=prev;
prev= cur;
cur=next;
\}
return(prev);
\}

Implementation of stack using linked list

In a stack elements are inserted and deleted at only one end. The order of insertion and deletion follows LIFO order. To implement stack the push operation can be implemented by using insertion in front. Pop operation can be implemented by deletion from front so that insertion and deletion is happening at the same end.

Implementation of queue using linked list

To implement a queue using a linked list we use two pointers the front and the rear. The front pointer will have the address of the first NODE and the rear pointer will have the address of the last NODE.
A new NODE is always attached to the rear of the list and the NODE at the front will be deleted first.

```
struct node
{
    int info;
    struct node *link;
};
typedef struct node NODE;
NODE * front,*rear;
front=NULL;
rear=NULL;
```

Boundary condition when front=NULL queue empty

The function inserts an element at the rear of the queue

```
void insert_rear(int item,NODE * rear)
\{
    NODE temp;
    temp=(NODE*)malloc(sizeof(NODE));
    if(temp==NULL)
    \{
```

```
    printf("queue overflow\n");
    return(first)
}
temp->info=item;
temp->link=NULL;
if (front==NULL)
{
    rear=temp;
front=temp;
}
    else
    {
    rear->link=temp;
    rear=temp;
    }
}
```


Function deletes the NODE in the front and returns the item

```
int del_front(NODE * front)
{
        NODE cur;
int itemdel;
    if(front==NULL)
    {
        printf("Queue underflow\n");
        return front;
    }
        cur=front;
        itemdel=cur->info;
        front=front->link;
        free(cur);
    return(itemdel);
    }
```


Linked stacks and queues

- We represented stacks and queues sequentially. However, when several stacks and queues coexisted, there was no efficient way to represent them sequentially. Fig below shows linked stack and a linked queue.
- Notice that the direction of links for both the stack and the queue facilitate easy insertion and deletion of NODEs. We can easily add or delete a NODE from the top of the stack. we can easily add a NODE to the rear of the queue and delete a NODE at the front.

If we wish to represent $n \leq$ MAX_STACKS stacks simultaneously, we begin with the declarations:

```
#define MAX_STACKS 10/* maximum number of stacks */
struct Stack
{
int data;
struct Stack * link;
};
typedef struct Stack stack
stack * top[MAX_STACKS]
```

We assume that the initial condition for the stacks is: top[i] = NULL, $0 \leq \mathrm{i}<$ MAX_STACKS and the boundary condition is: top[i] = NULL if the ith stack is empty

Function push creates a new NODE, temp, and inserts the NODE in front of the ith stack.

```
void push(int i, int item)
{/* add item to the ith stack */
stack * temp;
temp=(stack*)malloc(sizeof(stack))
temp }->\mathrm{ data = item;
temp }->\mathrm{ link = top[i];
top[i] = temp;
}
```

Function pop returns the top element and changes top to point to the address contained in its link field.

```
int pop(int i)
{/* remove top element from the ith stack */
int itemdel;
Stack * temp;
if (top[i]==NULL)
return stackEmpty();
temp = top[i];
itemdel = temp }->\mathrm{ data;
top[i] = top[i] }->\mathrm{ link;
free(temp);
return item;
}
```

To represent $\mathbf{m} \leq$ MAX_QUEUES queues simultaneously, we begin with the declarations:
\#define MAX_QUEUES 10 /* maximum number of queues */
struct queue \{
int data;
struct queue * link;
\};
typedef struct queue Queue

Queue *front[MAX_QUEUES],* rear[MAX_QUEUES];

We assume that the initial condition for the queues is: front[i] = NULL, , rear[i]=NULL0 $\leq \mathrm{i}$ < MAX_QUEUES and the boundary condition is: front[i] = NULL iff the ith queue is empty

Function addq adds the item to the ith queue

```
void addq(i, item)
{/* add item to the rear of queue i */
Queue * temp;
temp= (Queue*)malloc(sizeof(Queue));
if(temp==NULL)
{
printf("Queue Overflow");
return;
}
temp }->\mathrm{ data = item;
temp}->\mathrm{ link = NULL;
if (front[i]==NULL)
```

```
{
        front[i] = temp;
        rear[i] = temp;
}
else
{
        rear[i] }->\mathrm{ link = temp;
        rear[i]=temp;
    }
}
```


Function deleteq deletes the item in the front of the ith queue

```
int deleteq(int i)
{/* delete an element from queue i */
Queue * temp;
int itemdel
if (front[i]==NULL)
return queueEmpty();
temp = front[i];
itemdel = temp }->\mathrm{ data;
front[i]= front[i] }->\mathrm{ link;
free(temp);
return itemdel;
}
```


Circular Linked List

A singly linked list in which the last NODE has a null link is called a chain. If the link field of the last NODE points to the first NODE in the list, then such a linked list is called a circular list.

By keeping a pointer at the last instead of the front we can now insert easily at the front and end of the list

Function inserts an element to the front of the list

void insertFront(NODE *last, NODE * New)
\{/* insert an item at the front of the circular list whose last NODE is last */

```
if (last==NULL)
    {
/* list is empty, change last to point to new entry */
last = new;
last }->\mathrm{ link = last;
}
else
{
/* list is not empty, add new entry at front */
new }->\mathrm{ link = last }->\mathrm{ link;
last }->\mathrm{ link = new;
}
}
```


Function to insert an element in the end

```
void insertend(NODE *last, NODE * New)
{/* insert an item at the front of the circular list whose last NODE is last */
if (last==NULL)
{
/* list is empty, change last to point to new entry */
last = new;
last }->\mathrm{ link = last;
}
else
{
/* list is not empty, add new entry at front */
New }->\mathrm{ link = last }->\mathrm{ link;
last }->\mathrm{ link = New;
last=New;
}
}
```


Function to find the length of a circular linked list

```
int length(NODE* last)
{/* find the length of the circular list last */
NODE* temp;
int count = 0;
If(last==NULL)
return(0);
temp = last->link /* temp is now pointing at the first NODE*/
count++;
while(temp!=last)
{
```

```
count++;
temp = temp }->\mathrm{ link;
}
return count;
}
```


Header Linked List

A header linked list is a linked list which always contains a special NODE, called the header NODE, at the beginning of the list. There are two types of header list.

1. A grounded header list: Last NODE contains the null pointer.
2. Circular header list: Last NODE points back to the header NODE.

Note: Unless stated it is assumed that the linked list is circular header list.

Doubley Linked List

Disadvantage of singly linked list

- If we are pointing to a specific NODE, say p, then we can move only in the direction of the links. The only way to find the NODE that precedes p is to start at the beginning of the list.
- If we wish to delete an arbitrary NODE from a singly linked list. Easy deletion of an arbitrary NODE requires knowing the preceding NODE.
- Can traverse only in one direction.
- Difficult to delete arbitrary NODEs.

Doubly Linked List representation

- Each NODE now has two link fields, one linking in the forward direction and the other linking in the backward direction.
- A NODE in a doubly linked list has at least three fields, a left link field (llink), a data field (data), and a right link field (rlink). It can be represented as follows

A Doubly Linked List without Header NODE

A doubly linked list may or may not be circular. The data field of the header NODE usually contains no information.

A Circular Doubly Linked List with a Header NODE

If head is a pointer to the header NODE then head->llink= head-rlink= head

An empty doubly circular list with a header NODE

The necessary declarations are:

```
struct NODE
{
strunct NODE * llink;
int data;
struct NODE * rlink;
};
typedef struct NODE DNODE;
```

The function dinsert() inserts a newNODE into a doubly linked list after a NODE pointed by ptr

```
dinsert(DNODE *ptr, DNODE *newNODE)
{
    DNODE * next
```

```
next=ptr->rlink;
ptr->rlink=newNODE;
newNODE->llink=ptr;
newNODE->rlink=next;
next->llink=newNODE;
}
```

The function ddelete() deletes a NODE from a doubly linked list pointed by head

```
Void ddelete(DNODE *NODE,DNODE *head)
{
if (NODE==head)
printf("deletion of header NODE not permitted");
else
{
    prev=NODE->llink;
    next=NODE->rlink;
    prev->rlink=next;
    next->llink=prev
    free(cur)
}
}
```


Advantages of doubly linked list

- Can delete arbitrary NODE
- Can traverse in both directions

Disadvantage of doubly linked list

Space Efficiency: We have the overhead of storing two pointers for each element.

Polynomials Polynomial

Representation

We should be able to represent any number of different polynomials as long as memory is available. In general, A polynomial is represented as :

$$
A(x)=a_{m-1} x^{m-1}+\ldots a_{0} x^{0}
$$

where the a_{i} are nonzero coefficients and the e^{i} are nonnegative integer exponents such that e m-1>em-2>. \qquad $.>\mathrm{e} 1>\mathrm{e} 0 \geq 0$.

We represent each term as a NODE containing coefficient and exponent fields, as well as a pointer to the next term. Assuming that the coefficients are integers, the type declarations are:
struct polyNode \{
int coef;
int expon;
struct polyNode * link;
\};
Typedef struct polyNode POLY;
A polyNODE can be drawn as

coef	expon	link

Consider the polynomials $a=3 x^{14}+2 x^{8}+1 x+2$ and $b=8 x^{12}-3 x^{10}+10 x^{5}+3$ It can be represented as follows

Adding Polynomials

To add two polynomials, we examine their terms starting at the NODEs pointed to by a and b .

1. If $a \rightarrow$ expon $=b \rightarrow$ expon, we add the two coefficients $a \rightarrow \operatorname{coef}+b \rightarrow$ coef and create a new term for the result $\mathrm{c} . \mathrm{a}=\mathrm{a} \rightarrow$ link; $\mathrm{b}=\mathrm{b} \rightarrow$ link;
2. If $a \rightarrow$ expon $<b \rightarrow$ expon, then we create a duplicate term of b, attach this term to the result,called c , and $\mathrm{b}=\mathrm{b} \rightarrow$ link;
3. If $\mathrm{a} \rightarrow$ expon $>\mathrm{b} \rightarrow$ expon, then we create a duplicate term of a , attach this term to the result, called c , and $\mathrm{a}=\mathrm{a} \rightarrow$ link;

Adding two polynomials represented as singly Linked List

POLY *Pointer padd(POLY * a , POLY * b) /* return a polynomial which is the sum of a and b */
\{
POLY * c,*tempa, *tempb,*lastc;
int sum;
$\mathrm{c}=($ POLY $*)$ malloc $($ sizeof(POLY $))$
c->link=NULL
tempa=a
tempb=b
lastc=c;
while (tempa!=NULL \&\& tempb!=NULL)
\{

```
switch (COMPARE(tempa }->\mathrm{ expon, tempb }->\mathrm{ expon))
```

\{
case -1 : lastc $=$ attach $($ tempb \rightarrow coef, tempb \rightarrow expon,lastc $) ;$
tempb $=$ tempb \rightarrow link;
break;

```
    case 0: sum =tempa }->\mathrm{ coef + tempb }->\mathrm{ coef;
        if (sum)
        {
        lastc=attach(sum, tempa }->\mathrm{ expon, lastc);
        tempa = tempa }->\mathrm{ link; tempb = tempb }->\mathrm{ link;
        }
        break;
        case 1: lastc=attach(tempa }->\mathrm{ coef,tempa }->\mathrm{ expon,lastc);
        tema = tempa }->\mathrm{ link;
    }
}
/* copy rest of list a and then list b */
While(tempa!=NULL)
{
        lastc=attach (tempa }->\mathrm{ coef,tempa }->\mathrm{ expon,lastc);
        tempa=tempa->link;
}
While(tempb!=NULL)
{
        lastc=attach (tempb }->\mathrm{ coef,tempb }->\mathrm{ expon,lastc);
        tempb=tempb->link;
}
return(c);
}
```


Attach a NODE to the end of a list

POLY* attach(float c, int e, POL * rear)
\{

```
        temp = (POLY*)malloc(sizeof(POLY));
```

 temp \(\rightarrow\) coef \(=\mathrm{c}\);
 temp \(\rightarrow\) expon \(=\) e;
 rear->link=temp;
 rear=temp;
 return(rear);
 \}

Adding two polynomials represented as circular lists with header NODEs

POLY *Pointer padd(POLY * a POLY * b) /* return a polynomial which is the sum of a and b */
\{
POLY * c,*tempa, *tempb,*lastc;
int sum;

```
c= (POLY*)malloc(sizeof(POLY))
c->link=c
tempa=a->link;
tempb=b->link;
lastc=c;
while (tempa!=a && tempb!=b)
{
    switch (COMPARE(tempa }->\mathrm{ expon, tempb }->\mathrm{ expon))
    {
    case -1: lastc=attach(tempb }->\mathrm{ coef, tempb }->\mathrm{ expon,lastc);
            tempb = tempb }->\mathrm{ link;
                    break;
    case 0: sum =tempa }->\mathrm{ coef + tempb }->\mathrm{ coef;
        if (sum)
            {
                lastc=attach(sum, tempa }->\mathrm{ expon, lastc);
                tempa = tempa }->\mathrm{ link; tempb = tempb }->\mathrm{ link;
                }
            break;
        case 1: lastc=attach(a->coef,a->expon,lastc);
            tempa = tempa }->\mathrm{ link;
        }
}
/* copy rest of list a and then list b */
While(tempa!=a)
{
        lastc=attach (a }->\mathrm{ coef, a }->\mathrm{ expon,lastc);
    tempa=tempa->link;
}
While(tempb!=b)
{
        lastc=attach (b }->\mathrm{ coef, b }->\mathrm{ expon,lastc);
    tempb=tempb->link;
}
lastc->link=c
return(c);
}
```


Attach a NODE to the end of a list

POLY* attach(float c, int e, POL * rear)
\{
temp $=\left(\right.$ POLY $\left.{ }^{*}\right)$ malloc $($ sizeof $($ POLY $)$;

```
            temp}->\mathrm{ coef = c;
            temp }->\mathrm{ expon = e;
            temp->link =rear->link;
            rear->link=temp;
            rear=temp;
            return(rear);
}
```


Analysis of Polynomial function

The number of non zero terms in A and in B are the most important factors in the time complexity

Therefore, let m and n be the number of nonzero terms in A and B, respectively.
$A(x)=a m-1 x m-1+\ldots a 0 x 0$
$B(x)=b m-1 x n-1+\ldots b 0 x 0$

If $m>0$ and $n>0$, the while loop is entered. Each iteration of the loop requires $O(1)$ time. At each iteration, either a or b moves to the next term or both move to the next term. Since the iteration terminates when either a or b reaches the end of the list, therefore, the number of iterations is bounded by $\mathrm{m}+\mathrm{n}-1$.

The time for the remaining two loops is bounded by $\mathrm{O}(\mathrm{n}+\mathrm{m})$. The first loop can iterate m times and the second can iterate n times. So, the asymptotic computing time of this algorithm is $\mathbf{O}(\mathbf{n}+\mathbf{m})$.

Erasing a circular list

If we wish to compute more polynomials, it would be useful to reclaim the NODEs that are being used. This function erases a circular list pointed by ptr and adds the NODE to the availability list. void cerase(POLY *ptr)
\{
POLY* temp;
if (ptr)
temp $=$ ptr>link
ptr->link=avail
avail $=$ temp;
*ptr = NULL;
\}
\}

3.12. Sparse matrix representation

- We can save space and computing time by retaining only the nonzero terms of sparse matrices.
- In the sequential scheme each nonzero term was represented by a NODE with three fields: row, column, and value. These NODEs were organized sequentially. However, we found that when we performed matrix operations such as addition, subtraction, or multiplication, the number of nonzero terms varied.
- In this section, we study a linked list representation for sparse matrices. Usually, linked lists allow us to efficiently represent structures that vary in size, a benefit that also applies to sparse matrices.
- In our data representation, we represent each column of a sparse matrix as a circularly linked list with a header NODE. We use a similar representation for each row of a sparse matrix.
- Each NODE has a tag field, which we use to distinguish between header NODEs and entry NODEs.
- Each header NODE has three additional fields: down, right, and next.\square down field links into a column list and theright field links into a row list.
OThe next field links the header NODEs together.
The header NODE for row i is also the header NODE for column i, and the total number of header NODEs is max \{number of rows, number of columns \}.

next	
down	right

Header Node

- Each entry NODE consist of the following structure

row	col	value
down	right	

Entry Node

- Each header NODE is in three lists: a list of rows, a list of columns, and a list of header NODEs. The list of header NODEs also has a header NODE that has the same structure as an entry NODE.
- The row and col value of the header NODE consist of the dimension of the matrix

Example:

Consider the sparse matrix shown below.

The Linked The Linked representation is shown below

Since there are two different types of NODEs a union is used to create the appropriate data structure. The necessary C declarations are as follows:
\#define MAX_SIZE 50 /*size of largest matrix*/
typedef enum \{head, entry\} tagfield;
typedef struct entryNODE \{
int row;
int col;
int value;
\};
typedef struct matrixNODE \{
matrixPointer *down;
matrixPointer *right;
tagfield tag;
union \{
matrixPointer *next;
entryNODE entry;
\} u;
\};
typedef struct matrixNODE matrixPointer;
matrixPointer *hdNODE[MAX_SIZE];

Module-4

Introduction

Definition of Tree:
A tree is a finite set of one or more nodes such that

- There is a special node called the root.
- The remaining nodes are partitioned into $\mathrm{n} \geq 0$ disjoint sets $\mathrm{T}, \cdots, \mathrm{Tn}$, where each of these sets are called the subtrees of the root.

Example: Consider the tree given below

LEVEL

Figure 4.1 A sample Tree
The tree has 13 nodes and has one character as its information. A tree is always drawn with its root at the top. Here the node A is the root.
$>$ Degree of a node: The number of subtrees of a node is called its degree.

- Example : The degree of $\mathrm{A}=3, \mathrm{C}=1$, and of $\mathrm{F}=0$.
$>$ Degree of a Tree :The degree of a tree is the maximum degree of the nodes in the tree. The tree shown in the example has degree 3 .
$>$ Leaf or terminal nodes or external nodes: Nodes that have degree zero is called the leaf nodes
- Example : \{K,L,F,G,M,I,J \} is the set of leaf nodes
$>$ Non-terminal nodes/internal nodes : Nodes that have at least a degree one or two. (nodes other than the leaf nodes)
- Example : $\{\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{H}, \mathrm{A}\}$ is the set of Non-terminal nodes
$>$ Siblings : Children of the same parent are said to be siblings
- Example : $\{\mathrm{H}, \mathrm{I}, \mathrm{J}\}$ are siblings.
$>$ The ancestors: all the nodes along the path from the root to that node.
- Example : The ancestors of M are A, D, and H .
$>$ The level of a node is .The root is considered be at level one[1]. If a node is at level 1 , then its children are at level $1+1$.
$>$ The height or depth is maximum level of any node in the tree. Thus, the depth of the tree in the example is 4 .

Binary Trees

The Abstract Data type

Definition: A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called the left subtree and the right subtree.

Objects: a finite set of nodes either empty or consisting of a root node, left Binary_Tree, and right Binary_Tree.

Functions: for all bt,bt1,bt2 \in BinTree, item \in element

BinTree Create() $::=$	creates an empty binary tree
Boolean IsEmpty(bt) $::=$	if (bt == empty binary tree) return TRUE else return FALSE
BinTree MakeBT(bt1, item,bt2) $:=$	return a binary tree whose left subtree is bt1, whose right subtree is bt2, and whose root node contains the data item.
BinTree Lchild(bt) $::=$	if (IsEmpty(bt)) return error else return the left subtree of bt.
Element Data(bt) $::=$	if (IsEmpty(bt)) return error else return the data in the root node ofbt.
BinTree Rchild(bt) $::=$	if (IsEmpty(bt)) return error else return the right subtree of bt

Difference between binary tree and tree.

Binary tree	Tree
Empty tree exist	No tree exist with zero nodes
Order of the child is considered	Order of the child is not considered
Each node can be partitioned to only two disjoint subtrees	Each node can be partitioned to T1,T2.....Tn disjoint subtrees

Properties of Binary Tree

Lemma 1: [Maximum number of nodes]

1. The maximum number of nodes on level i of a binary tree is $2^{i-1}, i \geq 1$

Proof:

The proof is by induction on i .
Induction Base: The root is the only node on level $\mathrm{i}=1$. Hence, the maximum number of nodes
on level $\mathrm{i}=1$ is $2^{\mathrm{i}-1}=2^{0}=1$.
Induction Hypothesis: Let i be an arbitrary positive integer greater than 1. Assume that the maximum number of nodes on level $\mathrm{i}-1$ is $2^{\mathrm{i}-2}$.

Induction Step:

The maximum number of nodes on level $\mathrm{i}-1$ is $2^{\mathrm{i}-2}$ by the induction hypothesis.

Since each node in a binary tree has a maximum degree of 2 , the maximum number of nodes on level i is two times the maximum number of nodes on level $\mathrm{i}-1$, i.e $2 * 2^{i-2}=2^{\mathrm{i}-1}$

Hence Prooved
2. The maximum number of nodes in a binary tree of depth k is $2^{\mathrm{k}}-1, \mathrm{k} \geq 1$.

The maximum number of nodes in a binary tree of depth k is

$$
\sum_{i=1}^{k}(\text { maximum number of nodes on level } i)=\sum_{i=1}^{k} 2^{i-1}=2^{k}-1
$$

Lemma 2: [Relation between number of leaf nodes and degree-2 nodes]: For any non empty binary tree, T , if n 0 is the number of leaf nodes and n 2 the number of nodes of degree 2 , then $\mathrm{n} 0=\mathrm{n} 2+1$.

Proof:

Let n 1 be the number of nodes of degree one and n the total number of nodes. Since all nodes in T are at most of degree two, we have
$\mathrm{n}=\mathrm{n} 0+\mathrm{n} 1+\mathrm{n} 2$

If we count the number of branches in a binary tree, we see that every node except the root has a branch leading into it.

If B is the number of branches, then $n=B+1$
All branches stem out from a node of degree one or two.
Thus, $B=n 1+2 n 2$. Hence, we obtain -- (-3)
Sum of the branches that stem out of a node(outdegree) is always equal to the sum of the branches that stem into a node(indegree). Therefore Substitutuing eq(3) in eq(2)
$\mathrm{n}=\mathrm{B}+1$
$\mathrm{n}=\mathrm{n} 1+2 \mathrm{n} 2+1$
Subtracting Eq. (4) from Eq. (1) and rearranging terms, we get

$$
\begin{equation*}
\mathrm{n} 0=\mathrm{n} 2+1 \tag{4}
\end{equation*}
$$

Definition

Full Binary Tree: A full binary tree of depth k is a binary tree of depth k having $2^{k}-1$ nodes, $k \geq 0$.

Example

Figure 4.6 Full Binary tree of depth 4

The nodes are numbered in a full binary tree starting with the root on level 1 , continuing with the nodes on level 2, and so on. Nodes on any level are numbered from left to right.

Complete binary tree : A binary tree is complete if the number of nodes in each level i except possibly the last level is $2^{\mathrm{i}-1 .}$ The number of nodes in the last level appears as left as possible.

Example: A complete tree T11 with 11 nodes is shown below. This is not a full binary tree.

Complete Binary Tree

Extended Binary tree

- A binary tree T is said to be a 2-tree or an extended binary tree if each node N has either 0 or 2 children.
- The nodes with 2 children are called internal nodes and the nodes with 0 children are called external nodes. Sometimes the nodes are distinguished in diagrams by using circles for internal nodes and squares for external nodes
- The term extended binary tree comes from the operation where tree T is converted into a 2tree by replacing each empty subtree by new node and the new tree is a 2-tree. The nodes in the original tree T are internal nodes in the extended tree and the new nodes are the external nodes in the extended tree.

(a) Binary tree T

(b) Extended 2-tree

Strictly Binary Tree is a tree where every non leaf node in a binary tree has non empty left and right subtrees. A strictly binary tree with n leaves always contain $2 \mathrm{n}-1$ nodes

Example:

Example For a Strictly Binary Tree

Almost Complete Binary Tree: A binary tree of depth d is an almost complete binary tree if
a. A node n at level less than $\mathrm{d}-1$ has two sons
b. For any node n in the tree with a right descendant at level d, n must have a left son and every left descendant of n is either a leaf at level d or has two sons

Example

Almost Complete Binary Tree.

Binary Tree representations

Array Representation: If a complete binary tree with n nodes is represented sequentially, then for any node with index $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$, we have
$>$ parent (i) is at [i/2] if $i \neq 1$. If $i=1, i$ is at the root and has no parent.
$>$ leftChild (i) is at 2 i if $2 \mathrm{i} \leq \mathrm{n}$. If $2 \mathrm{i}>\mathrm{n}$, then i has no left child.
$>\operatorname{rightChild}(\mathrm{i})$ is at $2 \mathrm{i}+1$ if $2 \mathrm{i}+1 \leq \mathrm{n}$. If $2 \mathrm{i}+1>\mathrm{n}$, then i has no right child.

Example

Array representation of tree

This representation can be used for any binary tree. In most cases there will be a lot of unutilized spaces. For complete binary tree such as

Linked Representation

Disadvantage of array representation

- The array representation is good for complete binary trees but, it wastes a lot of space for many other binary trees.
- Insertion and deletion of nodes from the middle of a tree require the movement of potentially many nodes to reflect the change in level number of these nodes.
- These problems can be overcome easily through the use of a linked representation.

Each node has three fields, leftChild, data, and rightChild.
A node can be defined as:
struct node
\{
int data;
struct node * leftChild;
struct node * rightChild;
\};
Typedef struct node TreeNode;
A node in a tree can be represented as follows

leftchild	Data	rightchild

Node Representation

With this node structure it is difficult to determine the parent of a node, If it is necessary to be able to determine the parent of random nodes, then a fourth field, parent, may be included in the class TreeNode

Linked Representation of Skewed Tree

Linked Representation of Complete Tree

Binary Tree Traversals

- Traversing a tree is visiting each node in the tree exactly once.
- When a node is visited, some operation (such as outputting its data field) is performed on it.
- A full traversal produces a linear order for the nodes in a tree.
- When traversing a tree each node and its subtrees must be treated in the same fashion.
- Based on this there are three types of traversals inorder, preorder and postorder traversals.

Inorder Traversal

- Inorder traversal move down the tree toward the left until we can go no farther.
- Then "visit" the node,
- move one node to the right and continue.
- If we cannot move to the right, go back one more node and continue
- A precise way of describing this traversal is by using recursion as follows

```
void inorder(TreeNode * ptr)
{/* inorder tree traversal */
if (ptr)
    {
    inorder(ptr }->\mathrm{ leftChild);
    printf("%d",ptr }->\mathrm{ data);
    inorder(ptr }->\mathrm{ rightChild);
    }
}
```


Preorder Traversal

- visit a node
- traverse left, and continue.
- When you cannot continue, move right and begin again or move back until you can move right and resume."
void preorder(TreeNode $*$ ptr)
\{/* preorder tree traversal */
if ($p t r$)
\{
printf("\%d", ptr \rightarrow data);
preorder(ptr \rightarrow leftChild);
preorder(ptr \rightarrow rightChild);

```
\}
```

```
}
```


Postorder Traversal

- traverse left, and continue.
- When you cannot continue, move right and traverse right as far as possible
- Visit the node

```
void postorder(TreeNode *ptr)
{/* postorder tree traversal */
if (ptr)
    {
    postorder(ptr }->\mathrm{ leftChild);
    postorder(ptr }->\mathrm{ rightChild);
    printf("%d",ptr->data);
    }
}
```


Example:

Inorder Traversal: DGBAHEICF

Preorder Traversal: ABDGCEHIF

Postorder Traversal: GDBHIEFCA

Expression Tree: An expression containing operands and binary operators can be represented by a binary tree.

Representation and traversal of expression tree

A node representing an operator is a non leaf. A node representing an operand is a leaf. The root of the tree contains the operator that has to be applied to the results of evaluating the left subtree and the right subtree.

Example1: A + B * C can be represented as follows

When the binary expression trees are traversed preorder we get the preorder expression. When we traverse the tree postorder we get the postorder expression. When we traverse it inorder we get the inorder expression.

For Example : consider the traversals for the tree given above
Inorder traversal giving rise to infix expression $A+B * C$
Preorder traversal giving rise to prefix expression $+A * B C$
Postorder traversal giving rise to postfix expression ABC*+

Example2: $\mathrm{A}+(\mathrm{B}-\mathrm{C}) * \mathrm{D} \$(\mathrm{E} * \mathrm{~F})$ is represented as follows

Inorder traversal giving rise to infix expression $\mathrm{A}+(\mathrm{B}-\mathrm{C}) * \mathrm{D} \$(\mathrm{E} * \mathrm{~F})$
Preorder traversal giving rise to prefix expression : $+A^{*}-B C \$ D * E F$
Postorder traversal giving rise to postfix expressionABC-DEF*\$*+

Evaluation of Expression Tree

Example:

$$
\text { Result = } 3
$$

Additional Binary Tree operations

4.4.1. Copying Binary Trees

This function returns a pointer to an exact copy of the original tree.

```
TreeNode* Copy(TreeNode *original)
{
TreeNode * temp;
if (original!=NULL)
{
Temp=(TreeNode*)malloc(sizeof(TreeNode));
Temp->leftchild= copy(original->leftchild);
Temp->rightchild= copy(original->rightchild);
Temp->data=original ->data;
retrun temp;
}
return Null;
}
```


Testing Equality

- Equivalent Binary trees have the same structure and the same information in the corresponding nodes.
- Same structure means every branch in one tree corresponds to a branch in the second tree that is the branching of the trees is identical.
- This function returns true if the two trees are equivalent and false otherwise.

```
int equal(TreeNode *first,TreeNode *second)
{
If (first==NULL && second==NULL)
return true;
```

if(first !=NULL \&\& second!=NULL \& \& first->data==second->data \& \&
equal(first-> leftchild ,second->leftchild) \&\&
equal(first->rightchild,second->rightchild))
return true;
return false;
\}

The Satisfiability problem

- Conisder the set of formulas that we can construct by taking the variables $\mathrm{x} 1, \mathrm{x} 2, \ldots . \mathrm{xn}$ and operators $\wedge(A N D) V \vee(\mathrm{OR})$ and $\neg(\mathrm{NOT})$
- The variables can hold any one of the two possible values true or false.
- The set of expressions that can be formed using these variables and operators is defined by the following rules.

1. A variable is an expression
2. If x and y are expressions then $\neg x, x \wedge y, x \vee y$ are expressions
3. Order of evaluation first \neg then \wedge then \vee.
4. Parenthesis can be used to alter the normal order of evaluations.

Defintion: The satisfiability problem for formulas of the propositional calculus asks if there is an assignment of values to the variables that causes the value of the expression to be true.

Example: Representation of the expression $(x 1 \wedge \neg x 2) \vee(\neg x 1 \wedge x 3) \vee \neg x 3$ as a binary tree

Propositional formula in a binary Tree

Inorder Traversal of the tree is $\mathrm{x} 1 \wedge \neg \mathrm{x} 2 \vee \neg \mathrm{x} 1 \wedge \mathrm{x} 3 \vee \neg \mathrm{x} 3$ this is the infix form of the expression.
Note: The node containing \neg has only a right branch since \neg is a unary operator.

To determine satisfiability ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$) must take all possible combinations of true or false values and check the formula for each combination. For n variables ther are 2^{n} possible combinations of true $=t$ and false $=\mathrm{f}$.

Example: For $\mathrm{n}=3$ the eight combinations are (t,t,t),(t,t,f),(t,f,t),(t,f,f),(f,t,t), (f,t,f), (f,f,t),(f,f,f).
The node structure for the satisfaibility problem is given as follows

leftchild	Data	value	rightchild

The node structure can be defined as follows

typedef enum \{not,and, or, true, false \} logical;
struct node
\{
Struct node *leftchild;
Logical data;
Short int value;
Structnode * rightchild;
\};
Typedef struct node TNODE;

Algorithm to determine satisfiability

For (all 2^{n} possible combinations)
\{
Generate the next combination;
Replace the variables by their values;
Evaluate the root by traversing it in postorder;
If (root->value)
\{
Printf(<combination>);
Return;
\}
\}
Printf(" No satisfiable combination");

Analysis: This algorithm will take $\mathrm{O}\left(\mathrm{g} .2^{\mathrm{n}}\right)$ or exponential time, where g is the time to substitute values for $\mathrm{x} 1, \mathrm{x} 2$, \qquad xn and evaluate the expression.

Postorder Evaluation function: To evaluate an expression, the tree is traversed in postorder. When a node is visited the value of the expression represented by the left and right sub trees of a node are computed first. So the recursive postorder traversal algorithm is modified to obtain the function that evaluates the tree.

```
Void postorderEval(TNODE *node)
{
If (node)
{
```

```
    postorderEval(node->leftchild);
    postorderEval(node->rightchild);
    switch(node->data)
    {
        Case not: node->value= ! node->rightchild->value;
            Break;
        Case and: node->value= node->rightchild->value && node>lefchild->value;
            Break;
        Case or: node->value= node->rightchild->value | node>lefchild->value;
            Break;
    Case true: node->value= true; break;
    Case false: node->value= false; break;
    }
```

\}

Threaded Binary Tree

Threads

A binary tree has more NULL links than pointers. These null links can be replaced by special pointers, called threads, to other nodes in the tree.

Two way threading

To construct the threads we use the following rules (assume that ptr represents a node):

- If $\operatorname{ptr} \rightarrow$ leftChild is null, replace $\operatorname{ptr} \rightarrow$ leftChild with a pointer to the inorder predecessor of ptr.
- . If $\mathrm{ptr} \rightarrow$ rightChild is null, replace $\mathrm{ptr} \rightarrow$ rightChild with a pointer to the inorder successor of ptr.

One way threading: If $\mathrm{ptr} \rightarrow$ rightChild is null, replace $\mathrm{ptr} \rightarrow$ rightChild with a pointer to the inorder successor of ptr. Ptr->left child remains unchanged.

Note : unless specified we consider threading corresponds to the inorder traversal. To distinguish the threads from ordinary pointers, threads are always drawn with broken links

Example: consider the binary tree and the corresponding threaded tree given below

Binary tree

Threaded Binary Tree

- When we represent the tree in memory, we must be able to distinguish between threads and normal pointers.
- This is done by adding two additional fields to the node structure, leftThread and rightThread.
- Assume that ptr is an arbitrary node in a threaded tree.
- If ptr \rightarrow leftThread $=$ TRUE, then ptr \rightarrow leftChild contains a thread; otherwise it contains a pointer to the left child.
- Similarly, if ptr \rightarrow rightThread $=$ TRUE, then $p t r \rightarrow$ rightChild contains a thread; otherwise it contains a pointer to the right child.

This node structure is defined as follows
struct node\{
short int leftThread;
struct node * leftChild;
char data;
thread node *rightChild;
short int rightThread;
\};
typedef struct node ThreadNode;

- In Figure two threads have been left dangling: one in the left child of H , the other in the right child of G.
- To avoid loose threads, a header node is assumed for all threaded binary trees.
- The original tree is the left subtree of the header node.
- An empty binary tree is represented by its header node as in figure below

Empty threaded Binary tree

The complete memory representation for the tree is as below

Memory representation of threaded Tree
The variable root points to the header node of the tree, while root \rightarrow leftChild points to the start of the first node of the actual tree.

4.6.1 Inorder Traversal of a Threaded Binary Tree

By using the threads, we can perform an inorder traversal without making use of a stack.

- For any node, ptr, in a threaded binary tree, if ptr \rightarrow rightThread $=T R U E$, the inorder successor of ptr is ptr \rightarrow rightChild by definition of the threads.
- Otherwise we obtain the inorder successor of ptr by following a path of left-child links from the right-child of ptr until we reach a node with leftThread $=$ TRUE.

Finding the inorder successor of a node: The function insucc finds the inorder successor of any node in a threaded tree without using a stack.

```
ThreadNode * insucc(ThreadNode *tree)
{
ThreadNode * temp;
temp = tree }->\mathrm{ rightChild;
if (tree }->\mathrm{ rightThread=='f')
while (temp }->\mathrm{ leftThread=='f')
    temp = temp }->\mathrm{ leftChild;
return temp;
}
```


Inorder traversal of a threaded binary tree

- To perform an inorder traversal we make repeated calls to insucc
- This function assumes that the tree is pointed to by the header node's left child and that the header node's right thread is FALSE.

```
void Tinorder(ThreadNode * tree)
{
    ThreadNode * temp = tree;
for (;;)
{
    temp = insucc(temp);
    if (temp == tree) break;
```

printf("\%c", temp \rightarrow data);
$\}$
\}
Analysis: The computing time for tinorder is still $\mathrm{O}(\mathrm{n})$

Binary Search Trees

ADT Dictionary

objects: a collection of $n>0$ pairs, each pair has a key and an associated item functions: for all $d \in$ Dictionary, item \in Item, $k \in$ Key, $n \in$ integer

DictionaryCreate $\left(\mathrm{max} _\right.$size $)::=$	create an empty Dictionary
Boolean IsEmpty $(\mathrm{d}, \mathrm{n})::=$	if $(\mathrm{n}>0)$ return TRUE else return FALSE
Element Search(d, k$)::=$	return item with key k, return NULL if no such element.
Element Delete(d, k$)::=$	delete and return item (if any) with key k;
void Insert $(\mathrm{d}$, item,k) $::=$	insert item with key k into d.

Definition Binary search tree

A binary search tree is a binary tree. It may be empty. If it is not empty then it satisfies the following properties:

1) Each node has exactly one key and the keys in the tree are distinct.
2) The keys (if any) in the left subtree are smaller than the key in the root.
3) The keys (if any) in the right subtree are larger than the key in the root.
4) The left and right subtrees are also binary search trees.
5) The root has a key.

Example:

Binary search Tree

Searching a Binary Search Tree

To search for a node whose key is k. We begin at the root of the binary search tree.

- If the root is $N U L L$, the search tree contains no nodes and the search is unsuccessful.
- we compare k with the key in root. If k equals the root's key, then the search terminates successfully.
- If k is less than root's key, then, we search the left subtree of the root.
- If k is larger than root's key value, we search the right subtree of the root.

Structure of the node can be defined as follows

```
struct node
{
Struct node *lchild;
```

```
struct
{
int item; /* Itype represents the data type of the element*/
int key;
}data;
Struct node *rchild;
};
Typedef struct node TreeNode;
```

Recursive search of a binary search tree: Return a pointer to the element whose key is k, if there is no such element, return NULL. We assume that the data field of the element is of type elemenet and it has two components key and item.

```
Treenode * search(TreeNode * tree, int k)
{
    if (tree==NULL) return NULL;
    if ( }\textrm{k}==\mathrm{ tree }->\mathrm{ data.key)
    return (tree);
    if (k < tree }->\mathrm{ data.key)
        return search(tree }->\mathrm{ leftChild, k);
    return search(tree }->\mathrm{ rightChild, k);
}
```


Iterative search of a Binary Search tree

```
Treenode* iterSearch(TreeNode * tree, int k)
{
while (tree!=null)
{
    if (k == tree }->\mathrm{ data.key)
    return (tree);
    if (k < tree }->\mathrm{ data.key)
    tree = tree }->\mathrm{ leftChild;
    else
    tree = tree }->\mathrm{ rightChild;
}
return NULL;
}
```

Analysis of Search(Both iterative and recursive): If h is the height of the binary search tree, then we can perform the search using either search in $\mathrm{O}(\mathrm{h})$. However, recursive search has an additional stack space requirement which is $\mathrm{O}(\mathrm{h})$.

Inserting in to a Binary Search Tree: Binary search tree has distinct values, first we searchthe tree for the key and if the search is unsuccessful the key is inserted at the point the search terminated

Example : consider the tree given below

BST Tree

Insert 80

Insert 35

Inserting a dictionary pair into a binary search tree

If k is in the tree pointed at by node do nothing. Otherwise add a new node with data $=(k$, item $)$

```
TreeNode* insert(TreeNode *root, int k, int Item)
{
TreeNode * ptr, *lastnode;
lastnode=Modifiedsearch(root,k);
Ptr=(TreeNode*)malloc(sizeof(TreeNode));
ptr}->\mathrm{ data.key = k;
ptr}->\mathrm{ data.item = Item;
ptr}->\mathrm{ leftChild = ptr }->\mathrm{ rightChild = NULL;
if (root==NULL)
{
    root=ptr;
return(root);
}
if(lastnode!=NULL)
{
        if (k < lastnode }->\mathrm{ data.key)
        lastnode }->\mathrm{ leftChild = ptr;
        else
        lastnode }->\mathrm{ rightChild = ptr;
        return (root);
}
}
```

If the element is present or if the tree is empty the function Modifiedsearch returns NULL. If the element is not present it retrun a pointer to the last node searched.

Modifiedsearch(Treenode *root,int k)

```
TreeNode *temp,*prev;
temp==node;
prev=NULL;
If(temp==NULL)
return(NULL);
while(temp!=NULL)
{
    if(temp->data.key==k)
    {
        printf("element already found");
        return(NULL);
    }
    if(key<temp->data.key)
    {
        prev=temp;
        temp=temp->lchild;
    }
    else
    {
    Prev=temp;
    Temp=temp->rchild;
    }
}
retrun(prev);
}
```

Deletion from a binary search tree: Suppose T is a a binary search tree. The function to delete an item from tree T first search the tree to find the location of the node with the item and the location of the parent of N and the deletion of the node N depends on three cases:

Case 1: N has no children. Then N is deleted from T by replacing the location of the node N in the parent(N) by the NULL pointer

Example: Deleting Node 66 with NO children

Case 2: If N has exactly one child. Then N is deleted from T by replacing the location of N in Parent (N) by the location of the only child of N .

Example: Deleting Node 75 with exactly one children

Case 3: N has Two children. Let $S(N)$ denote the inorder successor of $N(S(N)$ does not have a left child).Then N is deleted from T by first deleting $S(N)$ from T (by using case1 or cae 2) and then replacing node N in T by the node $\mathrm{S}(\mathrm{N})$.

Example: Deleting Node 25 with two children

Now replace the node 25 with its inorder successor 33

Recursive function to delete a node in a BST

TreeNode *delete_element(TreeNode *node, int key)
\{
TreeNode * temp;
if (node == NULL)
return node;
if (key < node->data.key)
node->lchild = delete_element(node->lchild, key);
else if (key > node->data.key)
node-> rchild = delete_element(node-> rchild, key);

```
else
{
    // node with only one child
    if (node->lchild == NULL)
    {
            temp = node->rchild;
            free(node);
            return temp;
    }
    else if (node->rchild == NULL)
    {
            temp = node->lchild;
            free(node);
            return temp;
    }
    // node with two children
    else
    {
        temp = node-> rchild;
        while(temp->lchild!=NULL) //Get the inorder successor
                    temp=temp->lchild;
        node->data.item = temp->data.item;
        node->data.key=temp->data.key;
        node->rlink = delete_element(node->rchild, temp->data.key);
        return node;
        }
    }}
```


MODULE - 5

Introduction

The first recorded evidence of the use of graph dates back to 1736. When Leonhard Euler used them to solve the classical Konigsberg bridge problem.

Definitions

Graph: A graph G consist of two sets V and E

1. V is a finite nonempty set of vetices and
2. E is a set of pairs of vertices these pairs are called edges

A graph can be represents as $G=(V, E) . V(G)$ will represent the set of vertices and $E(G)$ will represent the set of edges of the graph G

Example:

$\mathrm{V}(\mathrm{G})=\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4, \mathrm{v} 5, \mathrm{v} 6\}$
$E(G)=\{e 1, e 2, e 3, e 4, ~ e 5, ~ e 6\} E(G)=\{(v 1, v 2)(v 2, v 3)(v 1, v 3)(v 3, v 4),(v 3, v 5)(v 5, v 6)\}$.
There are six edges and six vertex in the graph
Undirected Graph: In a undirected graph the pair of vertices representing an edge is unordered. thus the pairs (u, v) and (v, u) represent the same edge.

Example:

$$
\begin{aligned}
& V(G)=\{a, b, c, d\} \\
& E(G)=\{(a, b),(a, d),(b, d),(b, c)
\end{aligned}
$$

Directed Graph (digraph): In a directed graph each edge is represented by a directed pair (u, v), v is the head and u is the tail of the edge. Therefore (v, u) and $(<u, v)$ represent two different edges

Example:

$$
\begin{aligned}
& V(G)=\{a, b, d\} \\
& E(G)=\{(a, d),(a, b),(d, b)\}
\end{aligned}
$$

Self Edges/Self Loops: Edges of the form(v, v) are called self edges or self loops . It is an edge which starts and ends at the same vertex.

Example:

Mutigraph: A graph with multiple occurrences of the same edge is called a multigraph Example:

Complete Graph: An undirected graph with n vertices and exactly $n(n-1) / 2$ edges is said to be a complete graph. In a graph all pairs of vertices are connected by an edge.
Example : A complete graph with $\mathrm{n}=3$ vertices

If (u, v) is an edge in $E(G)$, then we say that the vertices u and v are adjacent and the edge (u, v) is incident on vertices u and v.

Path: A path from vertex u to v in graph g is a sequence of vertices $u, i 1, i 2, \ldots \ldots . i k, v$ such that (u,i1),(i1, 12$) \ldots \ldots . .(\mathrm{ik}, \mathrm{v})$ are edges in $\mathrm{E}(\mathrm{G})$. if G^{\prime} is directed then the path consists of $<u, i 1>,<i 1, i 2>\ldots \ldots . .<i k, v>$ edges in $E\left(G^{\prime}\right)$.

The length of the path is the number of edges in it.

Example:

$(B, C),(C, D)$ is a path from B to D the length of the path is 2
A simple path is a path in which all the vertices are distinct.
Cycle: A cycle is a simple path in which all the vertices except the first and last vertices are distinct. The first and the last vertices are same.
Example :

$$
(B, C),(C, D)(D, E)(E, A)(A, B) \text { is a cycle }
$$

Degree of a vertex : In a undirected graph degree of a vertex is the number of edges incident on a vertex.

In a directed graph the in-degree if a vertex v is the number of edges for which v is the head i.e. the number of edges that are coming into a vertex. The out degree is defined as the number of edges for which v is the tail i.e. the number of edges that are going out of a vertex

Subgraph: A subgraph of G is a graph G^{\prime} such that $V\left(G^{\prime}\right) \subseteq V(G)$ and $E\left(G^{\prime}\right) \subseteq E(G)$ Example :

Subgraph (G')

Connected Graph: An undirected graph G is said to be connected if for every pair of distinct vertices u and v in $V(G)$ there is a path from u to v in G.

Connected Component is a maximal connected subgraph
Strongly connected graph : A directed graph G is said to be strongly connected if for every pair of distinct vertices u an v in $V(G)$, there is a directed path from u to v and from v to u.

Tree: A tree is a connected acyclic connected graph.

ADT Graph

Objects: a nonempty set of vertices and a set of undirected edges, where each edge is a pair of vertices.

Functions: for all graph \in Graph, v,v1,v2 \in vertices

EGrapplereate():=	return an empty graph
Graph InsertVertex(graph,v):=	return a graph with v inserted. v has no incident edges
Graph InsertEdge(graph,v1,v2) $:=$	retrun a graph with a new edge between v1 and v2
Graph DeleteVertex(graph,v) $:=$	return a graph in which v and all edges incident to it is removed
Graph DeleteEdge(graph,v1,v2):=	retrun a graph in which the edge (v1,v2) is removed, leave the incident nodes in the graph
Boolean IsEmpty:=	lf (graph $==$ empty graph) retrun TRUE else Retrun FALSE
List Adjacent(graph,v) $:=$	retrun a list of all vertices that are adjacent to v

Graph Representation

The three most commonly used representations are

- Adjacency Matrix
- Adjacency List
- Adjacency Multilist

Adjacency Matrix: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with n vertices, $\mathrm{n}>=1$. The adjacency matrix of G is a two dimensional $n * n$ array for example a, with the property that $\mathrm{a}[\mathrm{i}][\mathrm{j}]=1$ if there exist ane edge (i, j) (for a directed graph edge $\langle\mathrm{i}, \mathrm{j}>$ is in $\mathrm{E}(\mathrm{G}) \cdot \mathrm{a}[\mathrm{i}][\mathrm{j}]=0$ if no such edge in G .

Example:

Adjacency Matrix

	0	1	2	3
0	0	1	1	1
1	1	0	1	1
2	1	1	0	1
3	1	1	1	0

Figure 5.1 Graph G1

- The space requirement to store an adjacency matrix is n^{2} bits.
- The adjacency matrix for a undirected graph is symmetric .About half the space can be saved in an undirected graph by storing only the upper or lower triangle of the matrix.
- For an undirected graph the degree of any vertex i is its row sum. For a directed graph the row sum is the out-degree and the column sum is the in-degree.

Adjacency list: In adjacency matrix the n rows of the adjacency matrix are represented as n chains. There is one chain for each vertex in G. The nodes in chain i represent the vertices that are adjacent from vertex i. The data field of a chain node stores the index of an adjacent vertex.

Example: the adjacency list of graph G1 in figure 5.1 is shown below

- For an undirected graph with n vertices and e edges. The linked adjacency lists representation requires an array of size n and 2e chain nodes.
- The degree of any vertex in an undirected graph may be determined by counting the number of nodes in the adjacency list.
- For a digraph the number of list nodes is only e.

Adjacency Multi lists: For each edge there will be exactly one node, but this node will be in two list(i.e., the adjacency list for each of the two nodes to which it is incident). A new field is necessary to determine if the edge is determined and mark it as examined.

The new node structure is

m	Vertex1	Vertex2	Link1	Link2

Example: The adjacency multilist for graph G1 is shown below

The Lists are Vertex 0: N0->N1->N2
Vertex 1: N0->N3->N4
Vertex 2: N1->N3->N5
Vertex 3: N2->N4->N5

Weighted Edges: In many applications the edges of a graph have weight assigned to them. These weights may represent the distance from one vertex $t o$ another or the cost for going from one vertex to an adjacent vertex. The adjacency matrix and list maintains the weight information also. A graph with weighted edges are also called network.

Example:

Elementary Graph Operations

Given an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and a vertex v in $\mathrm{V}(\mathrm{G})$,there are two ways to find all the vertices that are reachable from v or are connected to v.

- Depth First Search and
- Breadth First Search

Depth First Search

1. Visit the starting vertex v . (visiting consist of printing node's vertex)
2. Select an unvisited vertex w from v's adjacency and carry a depth first search on w .
3. A stack is maintained to preserve the current position in v's adjacency list.
4. When we reach a vertex u that has no unvisited vertices on adjacency list, remove a vertex from the stack and continue processing its adjacency list. Previously visited vertices are discarded and unvisited vertices are placed on stack
5. The search terminates when the stack is empty.

A recursive implementation of depth first search is shown below.
A global array visited is maintained, it is initialized to false, when we visit a vertex i we change the visited[i] to true.

Global Declaraions

```
# define FALSE 0
# define true 1
Short int visited[max_vertices];
void dfs(int v)
{
visited[v]=TRUE;
printf("%d",v);
w=graph[v]
while(w!=NULL)
{
    If(visited[w->vertex]==FALSE)
        dfs(w->vertex);
    w=w->link;
```

\}\}

Avadypile:

- If we represent G by its adjacency list then we can determine the vertices adjacent to v by following a chain of links. Since dfs examines each node in the adjacency list at most once then the time to complete the search is $\mathrm{O}(\mathrm{e})$.
- If we represent G by its adjacency matrix then determining all vertices adjacent o v requires $\mathrm{O}(\mathrm{n})$ time. Since we visit at most n vertices the total time is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Example: For the graph given below if the search is initiated from vertex 0 then the vertices are visited in the order vertex $3,1,2$

adjLists		data link					
[0]		3		1		2	0
[1]		2		0		3	0
[2]		1		0		, 3	0
[3]	\checkmark	0		1		-2	0

Breadth first Search

1. Search starts at vertex v marks it as visited.
2. It then visits each of the vertices on v's adjacency list.
3. As we visit each vertex it is placed on a queue.
4. When all the vertices in the adjacency list is visited we remove a vertex from the queue and proceed by examining each of the vertices in its adjacency list.
5. Visited vertices are ignored and unvisited vertices are placed on the queue
6. The search terminates when the queue is empty.

The queue definition and the function prototypes

```
struct node
{
    int vertex;
    struct node * link;
};
typedef struct node queue;
```

```
#meump
int visied[max_vertics];
void addq(int);
int delete();
void bfs(int v)
{
front=rear=NULL;
printf("%d",v);
visisted[v]= TRUE;
addq(v);
while(front)
{
v=deleteq();
while(w!=NULL)
    {
        if(visited[w->vertex]==FALSE)
        {
            printf("%d",w->vertex);
            addq(w->vertex);
            visited[w->vertex]=TRUE;
        }
            w=w->link;
    }
}
}
```


Analysis of BFS:

- For each vertex is placed on the queue exactly once, the while loop is iterated at most n times.
- For the adjacency list representation the loop has a total cost of $O(e)$. For the adjacency matrix representation the loop takes $\mathrm{O}(\mathrm{n})$ times
- Therefore the total time is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Insertion Sort: The basic step is to insert a new record into a sorted sequence of i records in sucha way that the resulting sequence of size $i+1$ is also ordered. The function insert implements this insertion.

Insert e into the ordered list $\mathrm{a}[\mathrm{i}: \mathrm{i}]$ such that the resulting list $\mathrm{a}[1: \mathrm{i}+1]$ is also ordered, the array must have space allocated for atleast $\mathbf{i}+2$ elements

```
Void insert(element e, element a[], int i)
{
a[0]=e;
while(e.key <a[i].key;
{
```


Example:

```
a[i+1]=a[i];
i--;
}
a[i+1]=e;
}
```


The following function sorts a[1:n] in increasing order

Void insertion_sort(element a[],int n)
\{
int j;
element temp;

$$
\operatorname{for}(\mathrm{j}=2 ; \mathrm{j}<=\mathrm{n} ; \mathrm{j}++)
$$

\{
Temp $=\mathrm{a}[\mathrm{j}]$;
insert(temp, a,j-1);
\}
\}

Example:

Analysis: In the worst case insert(e,a,i) makes $i+1$ comparsions before making insertion hence the complexity is O (i)Function insertion sort invokes the insert function $\mathrm{n}-1$ times so the time complexity of insertion sort is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Radix Sort: Radix sort is a method used to alphabetise a large list of names.(Here the radix is 26,. The 26 letters of the alphabet). The list of the names are first sorted according to the first letter of each name. That is the names are arranged to n classes, where the first class begins to those names that begins with the letter "A". the second class begins with "B" and so on. During

Exathplecond pass each class is alphabetised according to the second letter and so on. If the maximum length of the name is n the names are alphabetised in atmost n passes.

Suppose a list of n items A1,A2,...An is given, let d denote the radix(for example $\mathrm{d}=10$ for decimal digits, $\mathrm{d}=26$ for letters $\mathrm{d}=2$ bits). Suppose number is made of s digits. The radix sort algorithm will require s passes.

Example: The example below shows how 3 digit numbers can be sorted using reverse digit sort. First the numbers are sorted according to the units digit. On the second pass, the numbers are sorted according to the tens digits, then the number are sorted according to the hundreds digit.

Consider the list of numbers $348,143,361,423,538,128,321,543,366$

Pass-1

Input	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
348									348	
143				143						
361		361								
423				423						
538									538	
128									128	
321		321								
543				543						
366							366			

Pass-2

Input	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
361							361			
321			321							
143					143					
423			423							
543					543					
366							366			
348					348					
538				538						
128			128							

Pass-3

Input	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
321				321						
423					423					
128		128								
538						538				
143		143								
543						543				
348				348						

EX(ample:			361						
366			366						

Now the numbers are sorted 128,143,321,348,361,366,423,538,543

Analysis of Radix sort

$\mathrm{n}=$ number of elements
d= radix number
$\mathrm{s}=$ number of digits in each element
Then the number of comparisons $\mathrm{C}(\mathrm{n})<=\mathrm{d} * \mathrm{~s} * \mathrm{n}$
D is independent of n but s depends on n therefore
Time complexity worst case- $\mathrm{O}\left(\mathrm{n}^{2}\right)$
Time complexity best case- O (n logn)

Drawback of Radix sort

1. Radix sort works well when s (number of digits in the representation is small)
2. We may need d^{*} n memory locations. This may be minimized by using linked lists.

Address Calculation Sort

[In this method a function f is applied to each key.
[The result of this function determines into which of the several subfiles the record is to be placed.

- The function should have the property that: if $x<=y, f(x)<=f(y)$, Such a function is called order preserving.
[. An item is placed into a subfile in correct sequence by using appropriate sorting method simple insertion is often used.

Example:

$$
\begin{array}{llllllll}
25 & 57 & 48 & 37 & 12 & 92 & 86 & 33
\end{array}
$$

- Let us create 10 subfiles. Initially each of these subfiles is empty.
- The number is passed to hash function, which returns its Most significant digit (ten's place digit), the number is placed at that position, in the array of pointers.

Avantysi6: If all the elements (n) are uniformly distributed over m subfiles then n / m is approximately 1 , time of the sort is near $\mathrm{O}(\mathrm{n})$. On the other hand if maximum elements accommodate in one or two subfiles, then n / m is much larger significant work is required to insert its proper subfile at its proper position and efficiency is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Hashing

Hashing enables us to perform dictionary operations like search insert and delete in $\mathrm{O}(1)$ time. There are two types of hashing
(1) Static and
[1 Dynamic

Static Hashing

[. In static Hashing the dictionary pairs are stored in a table, ht called the hash table.
(The hash table is partitioned into \mathbf{b} buckets, $\mathrm{ht}[0], \ldots \ldots . . \mathrm{ht}[\mathrm{b}-1]$
® Each bucket is capable of holding s dictionary pairs.

- Thus a bucket is said to consist of \mathbf{s} slots. usually $s=1$
[The address or location of a pair whose key is k is determined by hash function h which maps keys into buckets.
© Thus for any key $k, h(k)$ is an integer in range 0 through $b-1$

The key density of a hash table is the ratio n / T

- n is the number of pairs in the table
- T is possible keys

The loading density or loading factor of a hash table is $a=n /(s b)$
$-\quad s$ is the number of slots

- $\quad b$ is the number of buckets

Example1:

b=26, s=2
$\mathrm{n}=10$ distinct identifiers- each representing a C library function
Loading factor $\mathrm{a}=\mathrm{n} /(\mathrm{sb})=10 / 52=0.19$
$f(x)=$ first character of x

Exampldefine, float, exp, char, atan, ceil, floor, clock, ctime
$\mathrm{f}(\mathrm{x}) \quad: 0, \quad 3, \quad 5, \quad 4, \quad 2, \quad 0, \quad 2, \quad 5, \quad 2, \quad 2$

	Slot0	Slot1
0	Acos	atan
1		
2	Char	ceil
3	Define	
4	exp	
5	foat	floor
\cdot		
\cdot		
24		
25		

Hash Functions: A hash function maps a key into a bucket in the hash table. A function H from the set K of keys into the set L of memory addresses is called the hash function

H:K->L

Desired Properties are

- Easy computation
[Minimal number of collisions
[Uniformly distribute the hash addresses throughout the set L

Division : Chose a number m larger than the number n of keys in K. The number m is chosen to be a prime number or a number without small divisors to reduce collisions. The function is defined as

$$
h(k)=k \% m \text { or } h(K)=k \bmod m
$$

Bucket addresses range from 0 to $\mathrm{m}-1$ and the hash table must have m buckets
Example:if $m=10$ then $h(25)=5, h(32)=2$
Mid Square: In this method the square of the key is found and appropriate number of bits are used from the middle of the square to obtain the bucket address

- $\mathrm{F}(\mathrm{K})=$ middle $\left(\mathrm{K}^{2}\right)$
- The number of bits used to obtain bucket address depends on table size.
- If r bits are used the range of values is 0 through $2^{r}-1$

Example: $\mathrm{K}=3205 \mathrm{~K}^{2}=10272025 \mathrm{H}(\mathrm{K})=72$
Folding: Partition the keys k into several parts

- All parts except for the last one have the same length
- The parts are added together to obtain the hash address
- Two possibilities

Exafoypleqple $\mathbf{k}=12320324111220$

$$
x 1=123, x 2=203, x 3=241, x 4=112, x 5=20, \text { address }=123+203+241+112+20=699
$$

Digit Analysis

- Useful in the case of a static file where all the keys in the table are known in advance
- Each key is interpreted using some radix r.
- The same radix is used for all the keys in the table
- Digits are examined with this radix
- Digits having the most skewed distributions are deleted.
- Enough digits are deleted so that the remaining digits are small enough to give and address in the range of hash table

Converting keys to integers

Two methods used for converting keys to integer are
(6) Converting each character to a unique integer and summing these unique integers.
[Shifting the integer corresponding to every other character by 8 bits and then summing it up

Over Flow Handling

Synonyms: Hash function h maps several different keys into the same bucket
Two keys, k 1 and k 2 are synonyms with respect to h

$$
\text { if } h(k 1)=h(k 2)
$$

An overflow occurs when home bucket for a new dictionary pair is full when we wish to insert this pair

A collision occurs when the home bucket for the new pair is not empty at the time of insertion.

Two popular ways To handle overflows

- Open Addressing/ Linear Probing
- Chaining

Open Addressing/Linear Probing

- When inserting a new pair whose key is k we search the hash table in the order $\mathrm{ht}[\mathrm{h}(\mathrm{k})+\mathrm{i}] \% \mathrm{~b}, 0<=\mathrm{i}<=\mathrm{b}-1$, where
- h is the hash function and
- b is the number of buckets
[The search terminates when we reach the first unfilled bucket and the new pair is inserted into this bucket.
0 Incase no such bucket is found, the table is full and the size of the hash table needs to be increased.
[. For good performance the table size is increased when loading density exceeds a prescribed threshold such as 0.75 rather when the table is full.
0 When the hash table is resized
- Hash function changes
- Home bucket of each key may change

Example:

Suppose the table T has 11 memory locations $\mathrm{T}[1] \ldots . . \mathrm{T}[11]$ and suppose the file f contains 8 records with the following hash addresses

Records	A	B	C	D	E	X	Y	Z
$\mathrm{H}(\mathrm{K})$	4	8	2	11	4	11	5	1

Suppose these 8 records are entered into the hash table in the above order the hash table will look as shown below.

Table T	X	C	Z	A	E	Y	-	B	-	-	D
Address	1	2	3	4	5	6	7	8	9	10	11

The average number S of probes for a successful search is $S=(1+1+1+1+2+2+2+3) / 8=13 / 8=1.6$
The average number U of probes for a unsuccessful search is
$\mathrm{U}=(7+6+5+4+3+2+1+2+1+1+8) / 11=40 / 11=3.6$

Example-2

Assume a 13 bucket table with 1 slot per bucket

Identifier	Additive Transform	x	Hash
for	$102+111+114$	327	2
do	$100+111$	211	3
while	$119+104+105+108+101$	537	4
if	$105+102$	207	12
else	$101+108+115+101$	425	9
function	$102+117+110+99+116+105+111+110$	870	12

0	1	2	3	4	5	6	7	8	9	10	11	12
function		for	do	while					else			if

Searching a key using linear Probing

(2) Compute $\mathrm{h}(\mathrm{k})$
(0. Examine the hash table in the order $\mathrm{ht}[\mathrm{h}(\mathrm{k})+\mathrm{i}] \% \mathrm{~b}, 0<=\mathrm{i}<=\mathrm{b}-1$, untill one of the follwing happens

- The bucket $\mathrm{ht}[\mathrm{h}(\mathrm{k})+\mathrm{i}] \% \mathrm{~b}$ contains the key k and the desired pair is found
- $\mathrm{ht}[\mathrm{h}(\mathrm{k})+\mathrm{i}] \% \mathrm{~b}$ is empty; k is not in the table.
- Return to ht[h(k)], the table is full and k is not in the table

Drawbacks of Linear Probing

(0) Identifiers tend to cluster together
[Adjacent cluster tend to coalesce
[Increase the search time

Example:showing the drawback

Insert acos, atoi,char,define,exp,ceil,cos, float, atol, floor, ctime into a 26 bucket hash table

bucket	\mathbf{x}	Bucket searched
0	acos	1
1	atoi	2
2	char	1
3	define	1
4	exp	1
5	ceil	4
6	cos	5
7	float	3
8	atol	9
9	floor	5
10	ctime	9
$\ldots \ldots$		
25		

We see the number of searches increasing and the keys clustering together

Quadratic Probing

- Quadratic probing uses a quadratic function of i as the increment
- Suppose a record R with key k has the hash addres $\mathrm{H}(\mathrm{k})=\mathrm{h}$ then instead of searching the locations with $h, h+1, h+2, \ldots \ldots \ldots$. we linearly search locations with $h, h+1, h+4, h+9$, \qquad $h+i^{2}$
- If the number m of locations in the table T is a prime number, then the above sequence will access half of the locations T

Double hashing

Here a second hash function H^{\prime} is used for resolving a collision, as follows.
Suppose a record R with key k has the hash address $\mathrm{H}(\mathrm{k})=\mathrm{h}$ and $\mathrm{h}^{\prime}(\mathrm{k})=\mathrm{h}^{\prime} \neq \mathrm{m}$ then we linearly search locations with addresses $\mathrm{h}, \mathrm{h}+\mathrm{h}$ ', $\mathrm{h}=2 \mathrm{~h}^{\prime} \cdot \mathrm{h}+3 \mathrm{~h}$ ', \qquad
If m is a prime number then the above sequence will access all the locations in the table T.
Note: One major disadvantage in any type of open addressing procedure is in the implementation of deletion.
Suppose a record r is deleted from location T(r), suppose we reach this location during a search, it does not mean the search is unsuccesssfull..
Thus when deleting a record the location should be labeled to indicate that previously it did contain a record

Chaining

- Maintain one list per bucket
- Each list containing the synonyms for that bucket.
- Search involves
- Computing the hash address $\mathrm{h}(\mathrm{k})$, and
- Examining the keys in the list of $h(k)$

Example; Insert acos, atoi,char,define, exp,ceil,cos, float, atol, floor, ctime into a 26 bucket hash table maintained as hash chain

[0]	\rightarrow	acos-> atoi-> atol
[1]	\rightarrow	NULL
[2]	\longrightarrow	char -. Ceil-> cos -> ctime
[3]	\longrightarrow	define
[4]		exp
[5]	\rightarrow	float-.floor
[6]		NULL
.		
[25]	\longrightarrow	NULL

5.7.4 Rehashing: When the hash table becomes nearly full, the number of collisions increases, thereby degrading the performance of insertion and search operations. In such cases, a better option is to create a new hash table with size double of the original hash table.

All the entries in the original hash table will then have to be moved to the new hash table. This is done by taking each entry, computing its new hash value, and then inserting it in the new hash table. Though rehashing seems to be a simple process, it is quite expensive and must therefore not be done frequently.

Example:

Consider the hash table of size 5 given below. The hash function used is $\mathrm{h}(\mathrm{x})=\mathrm{x} \% 5$.

0	1	2	3	4
	26	31	43	17

Rehash the entries into to a new hash table using hash function- $\mathrm{h}(\mathrm{x})=\mathrm{x} \% 10$.

0	1	2	3	4	5	6	7	8	9
	31		43			26	17		

Dynamic hashing

Limitation of static hashing: when the table tends to be full, overflow increases and reduces performance.

To ensure good performance, it is necessary to increase the size of a hash table whenever the loading density exceeds a prescribed threshold.

When the loading density increases array doubling is used to increase the size of the array to $2 \mathrm{~b}+1$. Change in divisor causes us to rebuild the hash table by reinserting the key in the smaller table. Dynamic hashing or extendible hashing reduces the rebuild time.

ExaThple: are two forms of dynamic hashing

- Dynamic hashing using directories
- Directory less dynamic hashing

Example: Hash function that transforms keys into 6 bit non negative integers. $\mathrm{H}(\mathrm{k}, \mathrm{t})$ denote the integers formed by the ' \boldsymbol{t} ' least significant bits of $h(k)$.
The example taken is a two letter key. H transforms Letter A,B,C into bit sequnce 100,101 and 110 respectively Digits 0 through 7 are transformed into their 3 bit representation

\mathbf{k}	$\mathbf{h}(\mathbf{k})$
A0	100000
A1	100001
B0	101000
B1	101001
C1	110001
C2	110010
C3	110011
C5	110101

Dynamic Hashing using directories

(1) A directory of d of pointers to buckets are used
[The number of bits of $h(k)$ used to index the directory is called the directory depth.
[Size of directory depends on the number of bits of $h(k)$ used to index into the directory.
(2 Directory size $\mathrm{d}=2^{\mathrm{t}}$ where t is the number of bits used to identify all $\mathrm{h}(\mathrm{k})$.
(0. Initially $\mathrm{t}=2$ bits then $\mathrm{d}=2^{2}=4$
[$\mathrm{H}(\mathrm{k}, \mathrm{t})$ denote the integers formed by the t least significant bits of $\mathrm{h}(\mathrm{k})$.

Example: Figure below shows a dynamic hash table that contain the keys A0, B0,A1,B1,C2 and C3. Here the directory depth is 2 and uses buckets that have 2 slots. For each key k,

we examine the bucket pointed to by $\mathrm{d}[\mathrm{h}(\mathrm{k}, \mathrm{t})]$ where t is the directory depth. Suppose we insert C 5 into the hash table since $\mathrm{h}(\mathrm{c} 5,2)=01$ we follow the pointer $\mathrm{d}[01]$ and this bucket is full. To resolve the overflow, we determine the least u such that $h(k, u)$ is not the same for all keys. Incase u is greater than the directory depth we increase the directory depth to this least value u. Figure below shows the table after inserting C5

Example:

Advantages

- Only the directory doubles hash table remains the same
- Only the entries that overflows needs to be rehashed

Directory Less Dynamic Hashing

[Also known as liner dynamic hashing
[Directory is not used instead an array ht of buckets is used.
[. We assume that this array is as large as possible so there is no possibility of increasing the size dynamically
(1) To avoid initializing such a large array, two variables are used \mathbf{r} and $\mathbf{q}, 0<=q<=2^{r}$. It keeps track of the active buckets.
[At any time only the buckets 0 to $2^{\mathrm{r}}+\mathrm{q}-1$ are active
[Each active bucket is the start of a chain of buckets.
[The remaining buckets in the chain are called overflow buckets.
0 Each dictionary pair is either in a active or an overflow bucket.
Figure Below shows a directory less hash table ht with $\mathrm{r}=2$ and $\mathrm{q}=0$. The number of active bucket is 4. The index of the active bucket identifies its chain.. Each active bucket has 2 slots.

00	B 4 A 0
01	A 1 B 5
10	C 2 - 11
C 3	
-	

$$
\mathrm{r}=2, \mathrm{q}=0
$$

When we insert C5 into the table, chain 01 is examined and we verify that C5 is not present. Since the active bucket for the searched chain is full we get an overflow. An overflow is handled by activating bucker $2^{r}+q$, reallocating the entries in the chain q then the value of q is incremented by 1.incase q becomes 2^{r}. We increment r by 1 and reset q to 0 . The reallocation is done usingh(k,r+1). Finally the new pair is inserted into the chain.

Example:

000	A0 -	overflow bucket
001	A1 B5	\rightarrow
C5 5		
010	C 2 -	
011	C 3 -	
100	B 4 -	new active bucket

$$
\mathrm{r}=2, \mathrm{q}=1
$$

Insert C1 will again result in an overflow at 001 so the bucket $5=100$ is activated. Rehashing is done and the table is as shown below.

000	A 0 -
001	A 1 C 1
010	C 2 -
011	C 3 -
100	B 4 -
101	B 5 C 5

$$
\mathrm{r}=2, \mathrm{q}=2
$$

Files and their Organization

Data Hierarchy

Every file contains data which can be organized in a hierarchy to present a systematic organization. The data hierarchy includes data items such as fields, records, files, and database. These terms are defined below.

- A data field is an elementary unit that stores a single fact. A data field is usually characterized by its type and size. For example, student's name is a data field that stores the name of students. This field is of type character and its size can be set to a maximum of 20 or 30 characters depending on the requirement.
- A record is a collection of related data fields which is seen as a single unit .For example, the student's record may contain data fields such as name, address, phone number, roll number, marks obtained, and so on.
- A file is a collection of related records. For example, if there are 60 students in a class, then there are 60 records. All these related records are stored in a file

Exampkedirectory stores information of related files. A directory organizes information so that users can find it easily.

Consider figure that shows how multiple related files are stored in a student directory.

Student's	Student's	Student's
Personal Info File	Academic Info File	Fees Info Roll_no
File		
Name	Roll_no	Roll_no
Address	Name	Name
Phone No	Course	Fees
	Marks Grade in Sports	Lab Dues Hostel Dues Library Dues

File Attributes

Every file in a computer system is stored in a directory. Each file has a list of attributes associated with it. It gives the operating system and the application software information about the file and how it is to be used.

These attributes are

- File name It is a string of characters that stores the name of a file. File naming onventions vary from one operating system to the other.
- File position It is a pointer that points to the position at which the next read/write operation will be performed.
- File structure It indicates whether the file is a text file or a binary file. In the text file, the numbers(integer or floating point) are stored as a string of characters. A binary file, stores numbers in the same way as they are represented in the main memory.
- File Access Method: It indicates whether the records in a file can be accessed sequentially or randomly. In sequential access mode, records are read one by one. That is, if 60 records of students are stored in the STUDENT file, then to read the record of 39th student, you have to go through the record of the first 38 students. However, in random access, records can be accessed in any order.
- Attributes Flag- A file can have six additional attributes attached to it. These attributes are usually stored in a single byte, with each bit representing a specific attribute. If a particular bit is set to ' 1 ' then this means that the corresponding attribute is turned on. Table below shows the list of attributes and their position in the attribute flag or attribute byte. Note that the directory is treated as a special file in the operating system. So, all these attributes are applicable to files as well as to directories

Attribute	Attribute Byte
Read-Only	00000001
Hidden	00000010
System	00000100
Volume Label	00001000
Directory	00010000
Archive	00100000

Example: ○ Read-only A file marked as read-only cannot be deleted or modified For example, if an attempt is made to either delete or modify a read-only file, then a message 'access denied' is displayed on the screen.

- Hidden A file marked as hidden is not displayed in the directory listing.
- System A file marked as a system file indicates that it is an important file used by the system and should not be altered or removed from the disk.
- Volume Label Every disk volume is assigned a label for identification. The label can be assigned at the time of formatting the disk or later through various tools such as the DOS command LABEL.
- Directory In directory listing, the files and sub-directories of the current directory are differentiated by a directory-bit. This means that the files that have the directory-bit turned on are actually sub-directories containing one or more files.
- Archive The archive bit is used as a communication link between programs that modify files and those that are used for backing up files. Most backup programs allow the user to do an incremental backup. Incremental backup selects only those files for backup which have been modified since the last backup. when the program archives the file, it clears the archive bit (sets it to zero). Subsequently, if any program modifies the file, it turns on the archive bit (sets it to 1). Thus, whenever the backup program is run, it checks the archive bit to know whether the file has been modified since its last run. The backup program will archive only those files which were modified.

Text and binary files

Text file

- also known as a flat file or an ASCII file
- It is structured as a sequence of lines of alphabet, numerals, special characters, etc. However, the data in a text file, whether numeric or non-numeric, is stored using its corresponding ASCII code.
- The end of a text file is often denoted by placing a
- special character, called an end-of-file marker, after the last line in the text file.

Binary file

- contains any type of data encoded in binary form for computer storage and processing purpose.
- A binary file stores data in a format that is similar to the format in which the data is stored in the main memory.
- a binary file is not readable by humans

Basic file Operations: The basic operations that can be performed on a file are given below

Exantiplg:a File- A file is created by specifying its name and mode. Then the file is opened for writing records that are read from an input device. Once all the records have been written into the file, the file is closed.

Updating a File : Updating a file means changing the contents of the file. A file can be updated in the following ways:

- Inserting a new record in the file. For example, if a new student joins the course, we need to add his record to the STUDENT file.
- Deleting an existing record. For example, if a student quits a course in the middle of the session, his record has to be deleted from the STUDENT file.
- Modifying an existing record. For example, if the name of a student was spelt incorrectly, then correcting the name will be a modification of the existing record.

Retrieving from a File- Extracting useful data from a given file. Information can be retrieved from a file either for an inquiry or for report generation. An inquiry for some data retrieves low volume of data, while report generation may retrieve a large volume of data from the file.

Maintaining a File - It involves restructuring or re-organizing the file to improve the performance of the programs that access this file. Restructuring a file keeps the file organization unchanged and changes only the structural aspects of the file.

FILE ORGANIZATION

A file is a collection of related records. The main issue in file management is the way in which the records are organized inside the file. The following considerations should be kept in mind before selecting an appropriate file organization method:

- Rapid access to one or more records
- Ease of inserting/updating/deleting one or more records without disrupting the speed of accessing record(s).
- Efficient storage of records
- Using redundancy to ensure data integrity

There are three different ways in which a file can be organized.

SequeNtial file organization

ExampRecords are written in the order in which they are entered

- Records are read and written sequentially
- Deletion or updation of one or more records calls for replacing the original file with a new file that contains the desired changes
- Records have the same size and the same field format
- Records are sorted on a key value
- Generally used for report generation or sequential reading

Advantages

- Simple and easy to handle
- No extra overheads involved
- Sequential files can be stored on magnetic disks as well as magnetic tapes
- Well suited for batch-oriented applications

Disadvantages

- Records can be read only sequentially. If ith record has to be read, then all the $\mathrm{i}-1$ records must be read
- Does not support update operation. A new file has to be created and the original file has to be replaced with the new file that contains the desired changes
- Cannot be used for interactive applications

Relative file Organization

Features

- Provides an effective way to access individual records
- The record number represents the location of the record relative to the beginning of the file.
- Records in a relative file are of fixed length
- Relative files can be used for both random as well as sequential access
- Every location in the table either stores a record or is marked as FREE

Address of ith record $=$ base_address $+(\mathrm{i}-1)$ * record_length
Consider the base address of a file is 1000 and each record occupies 20 bytes, then the address of the 5th record can be given as:

$$
\begin{aligned}
& 1000+(5-1) * 20 \\
& =1000+80 \\
& =1080
\end{aligned}
$$

Relative record number	Records stored in memory
0	Record 0
1	Record 1
2	FREE
3	FREE
4	Record 4
$\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$	
98	$\cdots \cdots \cdots \cdots \cdots$
99	FREE

Exdyaptbeges

- Ease of processing
- If the relative record number of the record that has to be accessed is known, then the record can be accessed instantaneously
- Random access of records makes access to relative files fast
- Allows deletions and updations in the same file
- Provides random as well as sequential access of records with low overhead
- New records can be easily added in the free locations based on the relative record number of the record to be inserted
- Well suited for interactive applications

Disadvantage

- Use of relative files is restricted to disk devices
- Records can be of fixed length only
- For random access of records, the relative record number must be known in advance

Indexed Sequential File Organization

- Provides fast data retrieval
- Records are of fixed length
- Index table stores the address of the records in the file
- The ith entry in the index table points to the ith record of the file
- While the index table is read sequentially to find the address of the desired record, a direct access is made to the address of the specified record in order to access it randomly
- Indexed sequential files perform well in situations where sequential access as well as random access is made to the data

Record number	Address of the Record		
1	765		
2	27		
3	876		
4	742		
5	NULL		
6	NULL		
7	NULL		
8	NULL		
9	NULL	\quad	
:---:			

Advantages

- The key improvement is that the indices are small and can be searched quickly, allowing the database to access only the records it needs
- Supports applications that require both batch and interactive processing
- Records can be accessed sequentially as well as randomly
- Updates the records in the same file

Eisadpdentage

- Indexed sequential files can be stored only on disks
- Needs extra space and overhead to store indices
- Handling these files is more complicated than handling sequential files
- Supports only fixed length records

Indexing

An index for a file can be compared with a catalogue in a library
Indexed sequential files are very efficient to use.
There are two kinds of indices:

- Ordered indices that are sorted based on one or more key values
- Hash indices that are based on the values generated by applying a hash function

Ordered Indices

Indices are used to provide fast random access to records.A file may have multiple indices based on different key fields

An index of a file may be a
[. primary index : the index whose search key specifies the sequential order of the file.
Example Roll number
[Secondary index: search key specifies an order different from the sequential order of the file Example name field.Used to improve the performance of the queries

Dense and Sparse Indices

Record number	Pointer to record	Record	Pointer to next record
10		Record 10	
20		Record 20	
30		Record 30	
40		Record 40	
50		Record 50	
60		Record 60	

(a) Dense index

(b) Sparse index

- In a dense index the index table stores the address of every record in the file. However, in a sparse index, the index table stores the address of only some of the records in the file. Although

Examplearse indices are easy to fit in the main memory, a dense index would be more efficient to use than a sparse index if it fits in the memory.

- The records need not be stored in consecutive memory locations. The pointer to the next record stores the address of the next record.
- By looking at the dense index, it can be concluded directly whether the record exists in the file or not. In a sparse index, to locate a record, we first find an entry in the index table with the largest search key value that is either less than or equal to the search key value of the desired record. Then, we start at that record pointed to by that entry in the index table and then proceed searching the record using the sequential pointers in the file, until the desired record is obtained. For example, if we need to access record number 40, then record number 30 is the largest key value that is less than 40 . So jump to the record pointed by record number 30 and move along the sequential pointer to reach record number 40.Thus we see that sparse index takes more time to find a record with the given key.
- Denseindices are faster to use, while sparse indices require less space and impose less maintenance forinsertions and deletions.

Cylinder Surface Indexing

Cylinder surface indexing is a very simple technique used only for the primary key index of a sequentially ordered file. In a sequentially ordered file, the records are stored sequentially in the Increasing order of the primary key.
The index file will contain two fields-cylinder index andseveral surface indices. Generally, there are multiple cylinders, and each cylinder has multiple surfaces. If the file needs m cylinders for storage then the cylinder index will contain m entries.

The physical and logical organization of disk is shown in Figure below.

When a record with a particular key value has to be searched, then the following steps areperformed:

- First the cylinder index of the file is read into memory.
- Second, the cylinder index is searched to determine which cylinder holds the desired record.
- After the cylinder index is searched, appropriate cylinder is determined.
- Depending on the cylinder, the surface index corresponding to the cylinder is then retrieved from the disk.
- Once the cylinder and the surface are determined, the corresponding track is read and searched for the record with the desired key.

Heanaplbe total number of disk accesses is three-first, for accessing the cylinder index,second for accessing the surface index, and third for getting the track address. However, if track sizes are very large then we can also include sector addresses. But this would add an extra level of indexing.

The cylinder surface indexing methodof maintaining a file and index is referredto as Indexed Sequential Access Method (ISAM). This technique is the most popularand simplest file organization in use forsingle key values.

Multi-level Indices

Useful for very large files that may contain millions of records.
Consider a file that has 10,000 records. If we use simple indexing, then we need an index table that can contain at least 10,000 entries to point to 10,000 records. If each entry in the index table occupies 4 bytes, then we need an index table of $4 * 10000$ bytes $=40000$ bytes. Finding such a big space consecutively is not always easy. So, a better scheme is to index the index table.

Figure below shows a two-level multi-indexing.

We can continue further by having a three-levelindexing and so on. But practically, we use two-level indexing. Note that two and higher-levelindexing must always be sparse, otherwise multi-level indexing will lose its effectiveness.

Inverted indices

[Inverted files are commonly used in document retrieval systems for large textual databases.
[Reorganizes the structure of an existing data file in order to provide fast access to all records having one field falling within the set limits.
[. For example, inverted files are widely used by bibliographic databases that may store author names, title words, journal names, etc.
T. Thus, for each keyword, an inverted file contains an inverted list that stores a list of pointers to all occurrences of that term in the main text.
[There are two main variants of inverted indices:

- A record-level inverted index (also known as inverted file index or inverted file) stores a list of references to documents for each word

Example: - A word-level inverted index (also known as full inverted index or inverted list) in addition to a list of references to documents for each word also contains the positions of each word within a document.

B-TreeIndices

- A database is defined as a collection of data organized in a fashion that facilitates updating, retrieving, and managing the data.
- Most organizations maintain databases for their business operations. For example, A university maintains a database of all its students. These real-world databases may contain millions of records that may occupy gigabytes of storage space.
- For a database to be useful, it must support fast retrieval and storage of data.
- Since it is impractical to maintain the entire database in the memory, B-trees are used to index the data in order to provide fast access.
- If the database is indexed with a B-tree, the search operation will run in $\mathrm{O}(\log n)$ time.

Majority of the database management systems use the B-tree index technique as the default indexing method. This technique supersedes other techniques of creating indices, mainly due to its data retrieval speed, ease of maintenance, and simplicity.

Figure below shows a B-tree index.

It forms a tree structure with the root at the top. The index consists of a B-tree (balanced tree) structure based on the values of the indexed column. In this example, the indexed column is name and the Btree is created using all the existing names that are the values of the indexed column.

The upper blocks of the tree contain index data pointing to the next lower block, thus forming a hierarchical structure. The lowest level blocks, also known as leaf blocks, contain pointers to the data rows stored in the table.

Example:

The B-tree structure has the following advantages:

- Since the leaf nodes of a B-tree are at the same depth, retrieval of any record from anywhere in the index takes approximately the same time.
- B-trees improve the performance of a wide range of queries that either search a value having an exact match or for a value within specified range.
- B-trees provide fast and efficient algorithms to insert, update, and delete records that maintain the key order.
- B-trees perform well for small as well as large tables. Their performance does not degrade as the size of a table grows.
- B-trees optimize costly disk access.

Hashed Indices

[Hashing is used to compute the address of a record by using a hash function on the search key value.
[The hashed values map to the same address, then collision occurs and schemes to resolve these collisions are applied to generate a new address.

- Choosing a good hash function is critical to the success of this technique.
[By a good hash function, we mean two things.
- First, a good hash function, irrespective of the number of search keys, gives an average-case lookup that is a small constant.
- Second, the function distributes records uniformly and randomly among the buckets,

The drawback of using hashed indices includes:

- Though the number of buckets is fixed, the number of files may grow with time.
- If the number of buckets is too large, storage space is wasted.
- If the number of buckets is too small, there may be too many collisions.
(7) The following operations can be performed on a hashed file organization.
a. Insertion- To insert a record that has ki as its search value, use the hash function $\mathrm{h}(\mathrm{ki})$ to compute the address of the bucket for that record. If the bucket is free, store the record else use chaining to store the record.
b. Searching- To search a record having the key value ki, use $\mathrm{h}(\mathrm{ki})$ to compute the address of the bucket where the record is stored. The bucket may contain one or several records, so check for every record to retrieve the desired record with the given key value.
a. Deletion- To delete a record with key value ki, use $\mathrm{h}(\mathrm{ki})$ to compute the address of the bucket where the record is stored. The bucket may contain one or several records so check for every record in the bucket Then delete the record

